The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points

作者: Johan Helsing , Karl-Mikael Perfekt

DOI: 10.1016/J.MATPUR.2017.10.012

关键词:

摘要: Abstract We study the adjoint of double layer potential associated with Laplacian (the Neumann–Poincare operator), as a map on boundary surface Γ domain in R 3 conical points. The spectrum this operator directly reflects well-posedness related transmission problems across Γ. In particular, if is understood an inclusion complex permittivity ϵ, embedded background medium unit permittivity, then polarizability tensor well-defined when ( ϵ + 1 ) / − belongs to resolvent set energy norm. surfaces that have finite number points featuring rotational symmetry. On space, we show essential consists interval. L 2 , i.e. for square-integrable data, countable union curves, outside which Fredholm index can be computed winding respect spectrum. provide explicit formulas, depending opening angles reinforce our very precise numerical experiments, computing space and spectral measures two different examples. Our results indicate densities may approach zero extremely rapidly continuous part

参考文章(53)
Johan Helsing, Karl-Mikael Perfekt, On the polarizability and capacitance of the cube Applied and Computational Harmonic Analysis. ,vol. 34, pp. 445- 468 ,(2013) , 10.1016/J.ACHA.2012.07.006
Rodolfo H. Torres, Boundedness results for operators with singular kernels on distribution spaces Memoirs of the American Mathematical Society. ,vol. 90, pp. 0- 0 ,(1991) , 10.1090/MEMO/0442
Pierre Millien, Habib Ammari, Youjun Deng, Surface Plasmon Resonance of Nanoparticles and Applications in Imaging Archive for Rational Mechanics and Analysis. ,vol. 220, pp. 109- 153 ,(2016) , 10.1007/S00205-015-0928-0
Johan Helsing, The effective conductivity of arrays of squares: Large random unit cells and extreme contrast ratios Journal of Computational Physics. ,vol. 230, pp. 7533- 7547 ,(2011) , 10.1016/J.JCP.2011.05.032
Johan Helsing, Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial Abstract and Applied Analysis. ,vol. 2013, pp. 1- 20 ,(2013) , 10.1155/2013/938167
A.H. Sihvola, P. Yla-Oijala, S. Jarvenpaa, J. Avelin, Polarizabilities of platonic solids IEEE Transactions on Antennas and Propagation. ,vol. 52, pp. 2226- 2233 ,(2004) , 10.1109/TAP.2004.834081
Johan Helsing, Anders Karlsson, An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces Journal of Computational Physics. ,vol. 272, pp. 686- 703 ,(2014) , 10.1016/J.JCP.2014.04.053
R. Fuchs, Theory of the optical properties of ionic crystal cubes Physical Review B. ,vol. 11, pp. 1732- 1740 ,(1975) , 10.1103/PHYSREVB.11.1732