A simple proof of the $A_2$ conjecture

作者: Andrei K. Lerner

DOI:

关键词: Analytic proofConjectureFurstenberg's proof of the infinitude of primesShift operatorSimple (philosophy)MathematicsDiscrete mathematicsProof by contradiction

摘要: … Our proof completely avoids the notion of the Haar shift operator, and is based only on the “local mean oscillation decomposition.” Also our proof yields a simple proof of the “two-weight …

参考文章(12)
B Jawerth, A Torchinsky, Local sharp maximal functions Journal of Approximation Theory. ,vol. 43, pp. 231- 270 ,(1985) , 10.1016/0021-9045(85)90102-9
M Sharpley, C. Bennett, Interpolation of operators ,(1987)
Tuomas Hytönen, Carlos Pérez, Sharp weighted bounds involving A Analysis & PDE. ,vol. 6, pp. 777- 818 ,(2013) , 10.2140/APDE.2013.6.777
Oleksandra V. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space L2(w) Journal of Functional Analysis. ,vol. 255, pp. 994- 1007 ,(2008) , 10.1016/J.JFA.2008.04.025
Alexander Volberg, Stefanie Petermichl, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular Duke Mathematical Journal. ,vol. 112, pp. 281- 305 ,(2002) , 10.1215/S0012-9074-02-11223-X
Stefanie Petermichl, The sharp weighted bound for the Riesz transforms Proceedings of the American Mathematical Society. ,vol. 136, pp. 1237- 1249 ,(2007) , 10.1090/S0002-9939-07-08934-4
Michael T. Lacey, Stefanie Petermichl, Maria Carmen Reguera, Sharp A 2 inequality for Haar shift operators Mathematische Annalen. ,vol. 348, pp. 127- 141 ,(2010) , 10.1007/S00208-009-0473-Y
Stephen M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities Transactions of the American Mathematical Society. ,vol. 340, pp. 253- 272 ,(1993) , 10.1090/S0002-9947-1993-1124164-0
David Cruz-Uribe, José María Martell, Carlos Pérez, Sharp weighted estimates for classical operators Advances in Mathematics. ,vol. 229, pp. 408- 441 ,(2012) , 10.1016/J.AIM.2011.08.013