On weighted norm inequalities for the Carleson and Walsh–Carleson operator

作者: Francesco Di Plinio , Andrei K. Lerner

DOI: 10.1112/JLMS/JDU049

关键词:

摘要: We prove L(w) bounds for the Carleson operator C, its lacunary version Clac, and analogue Walsh series W in terms of Aq constants [w]Aq 1 q p. In particular, we show that, exactly as Hilbert transform, ‖C‖Lp(w) is bounded linearly by < also obtain [w]Ap , whose sharpness related to certain conjectures (for instance, Konyagin [International Congress Mathematicians, vol. II (European Mathematical Society, Zurich, 2006) 1393–1403]) on pointwise convergence Fourier functions near L. Our approach works general context maximally modulated Calderon–Zygmund operators.

参考文章(48)
B Jawerth, A Torchinsky, Local sharp maximal functions Journal of Approximation Theory. ,vol. 43, pp. 231- 270 ,(1985) , 10.1016/0021-9045(85)90102-9
Camil Muscalu, Wilhelm Schlag, Classical and Multilinear Harmonic Analysis ,(2013)
Nigel Kalton, Convexity, type and three space problem Studia Mathematica. ,vol. 69, pp. 247- 287 ,(1981) , 10.4064/SM-69-3-247-287
E. Stein, Note on the class LlogL Studia Mathematica. ,vol. 32, pp. 305- 310 ,(1969) , 10.4064/SM-32-3-305-310
Andrei K. Lerner, A simple proof of the $A_2$ conjecture arXiv: Classical Analysis and ODEs. ,(2012)
Loukas Grafakos, Modern Fourier analysis ,(2008)
Tuomas Hytönen, Carlos Pérez, Sharp weighted bounds involving A Analysis & PDE. ,vol. 6, pp. 777- 818 ,(2013) , 10.2140/APDE.2013.6.777
Tuomas P. Hytönen, Michael T. Lacey, Pointwise convergence of Walsh--Fourier series of vector-valued functions arXiv: Classical Analysis and ODEs. ,(2012)
Christoph Thiele, The quartile operator and pointwise convergence of Walsh series Transactions of the American Mathematical Society. ,vol. 352, pp. 5745- 5766 ,(2000) , 10.1090/S0002-9947-00-02577-0
Ra Hunt, On the Convergence of Fourier Series Journal of The London Mathematical Society-second Series. pp. 264- 268 ,(1935) , 10.1112/JLMS/S1-10.40.264