Exact traveling wave solution for the KP-BBM equation

作者: Qinghua Feng , Bin Zheng

DOI:

关键词: Exact differential equationFisher's equationPartial differential equationEikonal equationMathematical analysisDifferential equationBurgers' equationKadomtsev–Petviashvili equationPhysicsWave equation

摘要: In this paper, we derive exact traveling wave solutions of the KP-BBM equation by a presented method. The method appears to be efficient in seeking nonlinear equations.

参考文章(11)
Lei Yang, Jianbin Liu, Kongqing Yang, Exact solutions of nonlinear PDE, nonlinear transformations and reduction of nonlinear PDE to a quadrature Physics Letters A. ,vol. 278, pp. 267- 270 ,(2001) , 10.1016/S0375-9601(00)00778-7
Model Equations for Long Waves in Nonlinear Dispersive Systems Philosophical Transactions of the Royal Society A. ,vol. 272, pp. 47- 78 ,(1972) , 10.1098/RSTA.1972.0032
E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations Chaos Solitons & Fractals. ,vol. 22, pp. 285- 303 ,(2004) , 10.1016/J.CHAOS.2003.12.045
Mingliang Wang, Xiangzheng Li, Jinliang Zhang, The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics Physics Letters A. ,vol. 372, pp. 417- 423 ,(2008) , 10.1016/J.PHYSLETA.2007.07.051
M.A. Abdou, The extended tanh method and its applications for solving nonlinear physical models Applied Mathematics and Computation. ,vol. 190, pp. 988- 996 ,(2007) , 10.1016/J.AMC.2007.01.070
Abdul-Majid Wazwaz, Exact solutions of compact and noncompact structures for the KP–BBM equation Applied Mathematics and Computation. ,vol. 169, pp. 700- 712 ,(2005) , 10.1016/J.AMC.2004.09.061
Mingliang Wang, SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS Physics Letters A. ,vol. 199, pp. 169- 172 ,(1995) , 10.1016/0375-9601(95)00092-H