The Cole–Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld–Sokolov–Satsuma–Hirota equation

作者: Abdul-Majid Wazwaz

DOI: 10.1016/J.AMC.2008.10.034

关键词:

摘要: Abstract The completely integrable sixth-order nonlinear Drinfeld–Sokolov–Satsuma–Hirota equation is studied. Three distinct methods, namely the Cole–Hopf transformation method, tanh–coth and Exp-function method are used for a reliable treatment of this equation. Solitons, multiple soliton solutions, singular plane periodic solutions obtained equations. study highlights power each method.

参考文章(30)
Jon Nimmo, Claire Gilson, 良吾 広田, 敦 永井, The direct method in soliton theory ,(2004)
Abdul-Majid Wazwaz, Solitons and singular solitons for the Gardner–KP equation Applied Mathematics and Computation. ,vol. 204, pp. 162- 169 ,(2008) , 10.1016/J.AMC.2008.06.011
Abdul-Majid Wazwaz, MULTIPLE-SOLITON SOLUTIONS FOR THE KP EQUATION BY HIROTA’S BILINEAR METHOD AND BY THE TANH–COTH METHOD Applied Mathematics and Computation. ,vol. 190, pp. 633- 640 ,(2007) , 10.1016/J.AMC.2007.01.056
Abdul-Majid Wazwaz, Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation Applied Mathematics and Computation. ,vol. 204, pp. 20- 26 ,(2008) , 10.1016/J.AMC.2008.05.126
Willy Malfliet, Willy Hereman, The tanh method: II. Perturbation technique for conservative systems Physica Scripta. ,vol. 54, pp. 569- 575 ,(1996) , 10.1088/0031-8949/54/6/004
Abdul-Majid Wazwaz, Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation Applied Mathematics and Computation. ,vol. 200, pp. 437- 443 ,(2008) , 10.1016/J.AMC.2007.11.032
Abdul-Majid Wazwaz, Regular soliton solutions and singular soliton solutions for the modified Kadomtsev–Petviashvili equations Applied Mathematics and Computation. ,vol. 204, pp. 227- 232 ,(2008) , 10.1016/J.AMC.2008.06.031
Masaaki Ito, An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders Journal of the Physical Society of Japan. ,vol. 49, pp. 771- 778 ,(1980) , 10.1143/JPSJ.49.771