1-Soliton solution of the D(m, n) equation with generalized evolution

作者: Anjan Biswas , Houria Triki , None

DOI: 10.1016/J.AMC.2011.03.049

关键词: Nonlinear systemMathematical physicsMathematicsMathematical analysisEnvelope (waves)Numerical analysisPower law nonlinearitySolitonParametric statisticsAnsatzVariational principle

摘要: Abstract This paper obtains the 1-soliton solution of nonlinear dispersive Drinfel’d–Sokolov equation with power law nonlinearity. In first case soliton is without generalized evolution. The solitary wave ansatz method used to carry out integration. Subsequently, He’s semi-inverse variational principle integrate Parametric conditions for existence envelope solitons are given.

参考文章(9)
Russell Kohl, Daniela Milovic, Essaid Zerrad, Anjan Biswas, Optical Solitons by He’s Variational Principle in a Non-Kerr Law Media Journal of Infrared, Millimeter, and Terahertz Waves. ,vol. 30, pp. 526- 537 ,(2009) , 10.1007/S10762-009-9467-9
Houria Triki, Abdul-Majid Wazwaz, BRIGHT AND DARK SOLITON SOLUTIONS FOR A K (M, N) EQUATION WITH T-DEPENDENT COEFFICIENTS Physics Letters A. ,vol. 373, pp. 2162- 2165 ,(2009) , 10.1016/J.PHYSLETA.2009.04.029
Engin Topkara, Daniela Milovic, Amarendra K. Sarma, Fayequa Majid, Anjan Biswas, A study of optical solitons with Kerr and power law nonlinearities by He's variational principle Journal of the European Optical Society: Rapid Publications. ,vol. 4, pp. 09050- ,(2009) , 10.2971/JEOS.2009.09050
Ji-Huan He, Variational iteration method – a kind of non-linear analytical technique: some examples International Journal of Non-linear Mechanics. ,vol. 34, pp. 699- 708 ,(1999) , 10.1016/S0020-7462(98)00048-1
Anjan Biswas, Essaid Zerrad, Jude Gwanmesia, Ramzi Khouri, None, 1-Soliton solution of the generalized Zakharov equation in plasmas by He's variational principle Applied Mathematics and Computation. ,vol. 215, pp. 4462- 4466 ,(2010) , 10.1016/J.AMC.2009.12.071
Abdul-Majid Wazwaz, Exact and explicit travelling wave solutions for the nonlinear Drinfeld–Sokolov system Communications in Nonlinear Science and Numerical Simulation. ,vol. 11, pp. 311- 325 ,(2006) , 10.1016/J.CNSNS.2004.10.001
Kelei Zhang, Shengqiang Tang, Zhaojuan Wang, Bifurcations of travelling wave solutions for the nonlinear dispersion Drinfel’d–Sokolov (D(m,n)) system☆ Applied Mathematics and Computation. ,vol. 217, pp. 1620- 1631 ,(2010) , 10.1016/J.AMC.2009.07.047
Anjan Biswas, TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY Progress in Electromagnetics Research-pier. ,vol. 96, pp. 1- 7 ,(2009) , 10.2528/PIER09073108