作者: Anjan Biswas , Houria Triki , None
DOI: 10.1016/J.AMC.2011.03.049
关键词: Nonlinear system 、 Mathematical physics 、 Mathematics 、 Mathematical analysis 、 Envelope (waves) 、 Numerical analysis 、 Power law nonlinearity 、 Soliton 、 Parametric statistics 、 Ansatz 、 Variational principle
摘要: Abstract This paper obtains the 1-soliton solution of nonlinear dispersive Drinfel’d–Sokolov equation with power law nonlinearity. In first case soliton is without generalized evolution. The solitary wave ansatz method used to carry out integration. Subsequently, He’s semi-inverse variational principle integrate Parametric conditions for existence envelope solitons are given.