作者: Razvan Anisca , Valentin Ferenczi , Yolanda Moreno
DOI: 10.1016/J.JFA.2016.12.032
关键词: Isomorphism 、 Position (vector) 、 Equivalence relation 、 Group (mathematics) 、 Pure mathematics 、 Space (mathematics) 、 Borel equivalence relation 、 Orbit (control theory) 、 Mathematics 、 Banach space 、 Discrete mathematics
摘要: Abstract A topological setting is defined to study the complexities of relation equivalence embeddings (or “position”) a Banach space into another and isomorphism complex structures on real space. The following results are obtained: a) if X not uniformly finitely extensible, then there exists Y for which position inside reduces E 0 therefore smooth; b) l p , or L ≠ 2 1 reducible an orbit induced by action Polish group; c) can attain maximum complexity max ; d) subspace ≤ between group.