On automorphic Banach spaces

作者: Yolanda Moreno , Anatolij Plichko

DOI: 10.1007/S11856-009-0002-4

关键词:

摘要: A Banach space X will be called extensible if every operator E → from a subspace ⊂ can extended to an X. Denote by dens The smallest cardinal of subset whose linear span is dense in X, the automorphic when for into isomorphism T: which X/E = X/TE automorphism Lindenstrauss and Rosenthal proved that c0 conjectured l2 are only separable spaces. Moreover, they ask about or character c0(Γ), Γ uncountable. That c0(Γ) was Johnson Zippin, we prove here it that, moreover, while converse fails. We then study local structure spaces, showing particular infinite dimensional cannot contain uniformly complemented copies lnp, 1 ≤ p < ∞, ≠ 2. derive spaces such as Lp(μ), 2, C(K) not isomorphic K metric compact, subspaces c0, Gurarij space, Tsirelson Argyros-Deliyanni HI automorphic.

参考文章(30)
M. Zippin, Chapter 40 - Extension of Bounded Linear Operators Handbook of the Geometry of Banach Spaces. ,vol. 2, pp. 1703- 1741 ,(2003) , 10.1016/S1874-5849(03)80047-5
Andrew Tonge, Hans Jarchow, Joseph Diestel, Absolutely summing operators ,(1995)
P. Wojtaszczyk, Some remarks on the Gurarij space Studia Mathematica. ,vol. 41, pp. 207- 210 ,(1972) , 10.4064/SM-41-2-207-210
W. B. Johnson, M. Zippin, Extension of operators from weak*-closed sub-spaces of $l_1$ into C(K) spaces Studia Mathematica. ,vol. 117, pp. 43- 55 ,(1996)
Lior Tzafriri, Joram Lindenstrauss, Classical Banach spaces ,(1973)
Joram Lindenstrauss, W. B. Johnson, Handbook of the Geometry of Banach spaces Elsevier Science B.V.. ,vol. 2, ,(2001)
W. B. Johnson, M. Zippin, Extension of operators from subspaces of ₀(Γ) into () spaces Proceedings of the American Mathematical Society. ,vol. 107, pp. 751- 754 ,(1989) , 10.1090/S0002-9939-1989-0984799-7