Analysis of the CSP Reduction Method for Chemical Kinetics

作者: Antonios Zagaris , Tasso J. Kaper , Hans G. Kaper

DOI:

关键词: Curse of dimensionalityChemical kineticsApplied mathematicsEvolution equationDynamical systems theoryAsymptotic expansionSlow manifoldMathematicsSingular perturbationReduction (complexity)Mathematical analysis

摘要: This article is concerned with the asymptotic accuracy of Computational Singular Perturbation (CSP) method developed by Lam and Goussis to reduce dimensionality a system chemical kinetics equations. The exploits presence disparate time scales model dynamics an evolution equation on lower-dimensional slow manifold. In this it shown that successive applications CSP algorithm generate, order order, expansion results are illustrated Michaelis-Menten-Henri equations enzyme kinetics.

参考文章(24)
Christopher K. R. T. Jones, Geometric singular perturbation theory Springer Berlin Heidelberg. pp. 44- 118 ,(1995) , 10.1007/BFB0095239
Alan Fersht, Enzyme structure and mechanism ,(1977)
S.H. Lam, D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation Symposium (International) on Combustion. ,vol. 22, pp. 931- 941 ,(1989) , 10.1016/S0082-0784(89)80102-X
Xavier Cabre, Ernest Fontich, Rafael de la Llave, The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces Indiana University Mathematics Journal. ,vol. 52, pp. 283- 328 ,(2003) , 10.1512/IUMJ.2003.52.2245
Mauro Valorani, Dimitrios A. Goussis, Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock Journal of Computational Physics. ,vol. 169, pp. 44- 79 ,(2001) , 10.1006/JCPH.2001.6709
Marc R. Roussel, Simon J. Fraser, Geometry of the steady-state approximation: Perturbation and accelerated convergence methods Journal of Chemical Physics. ,vol. 93, pp. 1072- 1081 ,(1990) , 10.1063/1.459171
D.A. Goussis, S.H. Lam, A study of homogeneous methanol oxidation kinetics using CSP Symposium (International) on Combustion. ,vol. 24, pp. 113- 120 ,(1992) , 10.1016/S0082-0784(06)80018-4
Neil Fenichel, Geometric singular perturbation theory for ordinary differential equations Journal of Differential Equations. ,vol. 31, pp. 53- 98 ,(1979) , 10.1016/0022-0396(79)90152-9