A mathematical framework for reducing the domain in the mechanical analysis of periodic structures

作者: S. T. Pinho , P. Robinson , N. V. De Carvalho

DOI:

关键词: CombinatoricsDomain (mathematical analysis)MathematicsTopologyUnit (ring theory)Reduction (mathematics)

摘要: AbstractAtheoreticalframeworkisdeveloppedleadingtoasoundderivationofPeriodicBoundaryConditions(PBCs) for the analysis of domains smaller then Unit Cells (UCs), named reduced Cells(rUCs),byexploitingnon-orthogonaltranslationsandsymmetries. AparticulartypeofUCs,Offset-reduced (OrUCs) are highlighted. These enable reduction domain ofthe traditionally defined UCs without any loading restriction. The relevance framework anditsapplicationtoanyperiodicstructureisillustratedthroughtwopracticalexamples: 3Dwovenandhoneycomb.1. IntroductionNumericalanalysisofperiodicmaterialsandstructureshasproventobeanextremelypowerfultool.Itprovidesdetailedinformation,suchasfailureinitiationsitesandstress-strainatsmallerscales(meso/micro)Ithasbeensuccessfullyusedtodeterminehomogenisedproperties,studythedetailedstress-strainfieldsatnano-andmicroscopicscalestoobtainstructuraldamageinitiationconditionsandsites,aswellastosimulatedamagedevelopmentandassociateddeteriorationofthehomogenisedmechanicalproperties[1]. Severalworkscanbefounddiscussingtheapplicationofperiodicboundaryconditionstorepresentativeregions,e.g. [2–5]. Forperiodicstructures,theUnitCell(UC)isusedastherepresentativeregion,andtheanalysisisperformedbyapplyingperiodicdisplacementboundaryconditions. ThetopologicalcomplexityofmanyUCsfoundinpractice,suchasintypicalwovencomposites,oftenleadstounpracticalmodellingandanalysistimes. Forthisreason,internalsymmetriesoftheUCsmustwheneverpossiblebeexploitedtoreducetheanalysis

参考文章(11)
Sean F. Ellermeyer, David G. Robinson, Integrals of Periodic Functions Mathematics Magazine. ,vol. 74, pp. 393- ,(2001) , 10.2307/2691036
Zihui Xia, Yunfa Zhang, Fernand Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications International Journal of Solids and Structures. ,vol. 40, pp. 1907- 1921 ,(2003) , 10.1016/S0020-7683(03)00024-6
S LOMOV, D IVANOV, I VERPOEST, M ZAKO, T KURASHIKI, H NAKAI, S HIROSAWA, Meso-FE modelling of textile composites: Road map, data flow and algorithms Composites Science and Technology. ,vol. 67, pp. 1870- 1891 ,(2007) , 10.1016/J.COMPSCITECH.2006.10.017
S. Li, C.V. Singh, R. Talreja, A representative volume element based on translational symmetries for FE analysis of cracked laminates with two arrays of cracks International Journal of Solids and Structures. ,vol. 46, pp. 1793- 1804 ,(2009) , 10.1016/J.IJSOLSTR.2009.01.009
Xiaodong Tang, John D. Whitcomb, General Techniques for Exploiting Periodicity and Symmetries in Micromechanics Analysis of Textile Composites Journal of Composite Materials. ,vol. 37, pp. 1167- 1189 ,(2003) , 10.1177/0021998303037013003
Zihui Xia, Chuwei Zhou, Qiaoling Yong, Xinwei Wang, On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites International Journal of Solids and Structures. ,vol. 43, pp. 266- 278 ,(2006) , 10.1016/J.IJSOLSTR.2005.03.055
C.T. Sun, R.S. Vaidya, Prediction of composite properties from a representative volume element Composites Science and Technology. ,vol. 56, pp. 171- 179 ,(1996) , 10.1016/0266-3538(95)00141-7
S. Li, General unit cells for micromechanical analyses of unidirectional composites Composites Part A: Applied Science and Manufacturing. ,vol. 32, pp. 815- 826 ,(2001) , 10.1016/S1359-835X(00)00182-2
Shuguang Li, Anchana Wongsto, Unit cells for micromechanical analyses of particle-reinforced composites Mechanics of Materials. ,vol. 36, pp. 543- 572 ,(2004) , 10.1016/S0167-6636(03)00062-0