Between Sobolev and Poincaré

作者: Rafał Latała , Krzysztof Oleszkiewicz

DOI: 10.1007/BFB0107213

关键词: Probability measureDiscrete mathematicsMeasure (mathematics)Poincaré inequalityPhysical constantGaussian measureSobolev inequalitySobolev spaceNabla symbolMathematics

摘要: Let a ∈ [0, 1] and r [1, 2] satisfy relation = 2/(2 − a). μ(dx)=c n exp(-(|x1| +|x2| +...+|x | ))dx1dx2...dx be probability measure on the Euclidean space (R , ‖ · ‖). We prove that there exists universal constant C such for any smooth real function f R p [1,2) $$E_\mu f^2 - (E_\mu \left| \right|^p )^{2/p} \leqslant C(2 p)^a E_\mu \left\| {\nabla f} \right\|^2$$ . also if some probabilistic μ above inequality is satisfied 2) then h : → |h(x)-h(y)|≤∥x-y∥ E |h| < ∞ $$\mu (h > \sqrt \cdot t) e^{ Kt^r }$$ for t 1, where K 0 constant.

参考文章(6)
Michel Ledoux, Concentration of measure and logarithmic Sobolev inequalities Lecture Notes in Mathematics. ,vol. 33, pp. 120- 216 ,(1999) , 10.1007/BFB0096511
S. Kwapień, R. Latała, K. Oleszkiewicz, Comparison of Moments of Sums of Independent Random Variables and Differential Inequalities Journal of Functional Analysis. ,vol. 136, pp. 258- 268 ,(1996) , 10.1006/JFAN.1996.0030
S. Aida, D. Stroock, Moment Estimates Derived from Poincaré and Logarithmic Sobolev Inequalities Mathematical Research Letters. ,vol. 1, pp. 75- 86 ,(1994) , 10.4310/MRL.1994.V1.N1.A9
Leonard Gross, Logarithmic Sobolev Inequalities American Journal of Mathematics. ,vol. 97, pp. 1061- ,(1975) , 10.2307/2373688
Krzysztof Oleszkiewicz, Comparison of moments via Poincare-type inequality AMS Special Session on Stochastic Inequalities and Their Applications. pp. 135- 148 ,(1999)