Making more out of sparse data: hierarchical modeling of species communities

作者: Otso Ovaskainen , Janne Soininen

DOI: 10.1890/10-1251.1

关键词: Context (language use)Hierarchical database modelBayesian inferenceCommon speciesDistance decayComponent (UML)Computer scienceEcologyInferenceStatistical model

摘要: Community ecologists and conservation biologists often work with data that are too sparse for achieving reliable inference species-specific approaches. Here we explore the idea of combining models into a single hierarchical model. The community component model seeks shared patterns in how species respond to environmental covariates. We illustrate modeling framework context logistic regression presence–absence data, but similar structure could also be used many other types applications. first use simulated can improve parameterization especially rare species, which would informative alone. then apply real on 500 diatom show it has much greater predictive power than collection independent models. approach roughly one-third distance decay similarity explained by two variables characterizing water quality, typically preferring nutrient-poor waters high pH, common showing more general pattern resource use.

参考文章(35)
M. S. Warren, J. K. Hill, J. A. Thomas, J. Asher, R. Fox, B. Huntley, D. B. Roy, M. G. Telfer, S. Jeffcoate, P. Harding, G. Jeffcoate, S. G. Willis, J. N. Greatorex-Davies, D. Moss, C. D. Thomas, Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature. ,vol. 414, pp. 65- 69 ,(2001) , 10.1038/35102054
J. B. Kruskal, Nonmetric multidimensional scaling: A numerical method Psychometrika. ,vol. 29, pp. 115- 129 ,(1964) , 10.1007/BF02289694
Andrew M. Latimer, Shanshan Wu, Alan E. Gelfand, John A. Silander Jr., Building Statistical Models To Analyze Species Distributions Ecological Applications. ,vol. 16, pp. 33- 50 ,(2006) , 10.1890/04-0609
Manuel Peralvo, Rodrigo Sierra, Kenneth R. Young, Carmen Ulloa- Ulloa, Identification of biodiversity conservation priorities using predictive modeling: an application for the equatorial pacific region of South America Biodiversity and Conservation. ,vol. 16, pp. 2649- 2675 ,(2007) , 10.1007/S10531-006-9077-Y
AM Latimer, S Banerjee, H Sang Jr, ES Mosher, JA Silander Jr, None, Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecology Letters. ,vol. 12, pp. 144- 154 ,(2009) , 10.1111/J.1461-0248.2008.01270.X
C. Kremen, A. Cameron, A. Moilanen, S. J. Phillips, C. D. Thomas, H. Beentje, J. Dransfield, B. L. Fisher, F. Glaw, T. C. Good, G. J. Harper, R. J. Hijmans, D. C. Lees, E. Louis, R. A. Nussbaum, C. J. Raxworthy, A. Razafimpahanana, G. E. Schatz, M. Vences, D. R. Vieites, P. C. Wright, M. L. Zjhra, Aligning Conservation Priorities Across Taxa in Madagascar with High-Resolution Planning Tools Science. ,vol. 320, pp. 222- 226 ,(2008) , 10.1126/SCIENCE.1155193
David J. Currie, Energy and Large-Scale Patterns of Animal- and Plant-Species Richness The American Naturalist. ,vol. 137, pp. 27- 49 ,(1991) , 10.1086/285144
Jessica L. Green, Andrew J. Holmes, Mark Westoby, Ian Oliver, David Briscoe, Mark Dangerfield, Michael Gillings, Andrew J. Beattie, Spatial scaling of microbial eukaryote diversity Nature. ,vol. 432, pp. 747- 750 ,(2004) , 10.1038/NATURE03034