作者: Y. Hua
DOI: 10.1109/78.157226
关键词: Mathematics 、 Upper and lower bounds 、 Essential matrix 、 Eigenvalues and eigenvectors 、 Matrix pencil 、 Fast Fourier transform 、 Polynomial 、 Estimation theory 、 Matrix (mathematics) 、 Algorithm 、 Combinatorics
摘要: A new method, called the matrix enhancement and pencil (MEMP) is presented for estimating two-dimensional (2-D) frequencies. In MEMP an enhanced constructed from data samples, then approach used to extract out 2-D sinusoids principal eigenvectors of matrix. The method yields estimates frequencies efficiently, without solving roots a polynomial or searching in space. It shown that can be faster than FFT if number much smaller set. Simulation results are provided show accuracy very close Cramer-Rao lower bound. >