In vivo monitoring of rat macrophages labeled with poly(l-lysine)-iron oxide nanoparticles.

作者: Michal Babič , Martina Schmiedtová , Rudolf Poledne , Vít Herynek , Daniel Horák

DOI: 10.1002/JBM.B.33292

关键词: Iron oxide nanoparticlesDynamic light scatteringNanoparticleNuclear chemistryCoprecipitationAnalytical chemistryParticle sizeMaterials scienceAqueous solutionMaghemiteIron oxide

摘要: Coprecipitation of FeCl2 and FeCl3 with aqueous ammonia was used to prepare iron oxide nanoparticles dispersible in medium. Oxidation the particles sodium hypochlorite then yielded maghemite (γ-Fe2O3) which were coated two types coating –d-mannose or poly(l-lysine) (PLL) as confirmed by FTIR analysis. The <10 nm according transmission electron microscopy. Their hydrodynamic particle size ∼180 (by dynamic light scattering). d-mannose-, PLL-coated, neat γ-Fe2O3 well commercial Resovist® label rat macrophages. viability contrast properties labeled macrophages compared. PLL-coated found optimal. injected rats monitored vivo magnetic resonance imaging up 48 h. Transport PLL-γ-Fe2O3 confirmed. Tracking using developed can be for monitoring inflammations cell migration therapy. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1141–1148, 2015.

参考文章(38)
N. Fauconnier, A. Bee, J. Roger, J. N. Pons, Adsorption of gluconic and citric acids on maghemite particles in aqueous medium Steinkopff. pp. 212- 216 ,(1996) , 10.1007/BFB0115782
T. Kawaguchi, M. Hasegawa, Structure of dextran-magnetite complex: relation between conformation of dextran chains covering core and its molecular weight. Journal of Materials Science: Materials in Medicine. ,vol. 11, pp. 31- 35 ,(2000) , 10.1023/A:1008933601813
Maite Lewin, Nadia Carlesso, Ching-Hsuan Tung, Xiao-Wu Tang, David Cory, David T Scadden, Ralph Weissleder, None, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnology. ,vol. 18, pp. 410- 414 ,(2000) , 10.1038/74464
C J Fielding, P E Fielding, Molecular physiology of reverse cholesterol transport. Journal of Lipid Research. ,vol. 36, pp. 211- 228 ,(1995) , 10.1016/S0022-2275(20)39898-9
Daniel Horák, Michal Babič, Pavla Jendelová, Vít Herynek, Miroslava Trchová, Zbyněk Pientka, Emil Pollert, Milan Hájek, Eva Syková, d-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling Bioconjugate Chemistry. ,vol. 18, pp. 635- 644 ,(2007) , 10.1021/BC060186C
Li Liu, Qing Ye, Yijen Wu, Wen-Yuan Hsieh, Chih-Lung Chen, Hsin-Hsin Shen, Shian-Jy Wang, Haosen Zhang, T. Kevin Hitchens, Chien Ho, Tracking T-cells in vivo with a new nano-sized MRI contrast agent Nanomedicine: Nanotechnology, Biology and Medicine. ,vol. 8, pp. 1345- 1354 ,(2012) , 10.1016/J.NANO.2012.02.017
Carlos F. G. C. Geraldes, Sophie Laurent, Classification and basic properties of contrast agents for magnetic resonance imaging Contrast Media & Molecular Imaging. ,vol. 4, pp. 1- 23 ,(2009) , 10.1002/CMMI.265
Ângela L. Andrade, José D. Fabris, José D. Ardisson, Manuel A. Valente, José M. F. Ferreira, Effect of tetramethylammonium hydroxide on nucleation, surface modification and growth of magnetic nanoparticles Journal of Nanomaterials. ,vol. 2012, pp. 15- ,(2012) , 10.1155/2012/454759
Alexander P. Majewski, Ullrich Stahlschmidt, Valérie Jérôme, Ruth Freitag, Axel H. E. Müller, Holger Schmalz, PDMAEMA-Grafted Core–Shell–Corona Particles for Nonviral Gene Delivery and Magnetic Cell Separation Biomacromolecules. ,vol. 14, pp. 3081- 3090 ,(2013) , 10.1021/BM400703D
David A. C. Thomson, Ernest H. L. Tee, Nguyen T. D. Tran, Michael J. Monteiro, Matthew A. Cooper, Oligonucleotide and Polymer Functionalized Nanoparticles for Amplification-Free Detection of DNA Biomacromolecules. ,vol. 13, pp. 1981- 1989 ,(2012) , 10.1021/BM300717F