Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

作者: Ercan Karaköse , Mustafa Keskin

DOI: 10.1016/J.MATCHAR.2009.09.008

关键词: Energy-dispersive X-ray spectroscopyMaterials scienceOptical microscopeDifferential scanning calorimetryIntermetallicScanning electron microscopeMicrostructureAnalytical chemistryCrystallographyIngotAlloy

摘要: The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. resulting cast melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential calorimetry microhardness techniques. diffraction analysis indicated that ingot samples {alpha}-Al, intermetallic Al{sub 3}Ni 2}Cu phases. results show the microstructures of rapidly solidified are clearly different from their alloy. reveal a very fine cellular structure particles. Moreover, at high solidification rates have polygonal dispersed in supersaturated aluminum matrix. measurements revealed exothermic reaction between 290 deg. C 440 which more pronounced ternary

参考文章(39)
Terry C. Totemeier, William F. Gale, Colin J. Smithells, Smithells metals reference book ,(1949)
P. Liu, B.X. Kang, X.G. Cao, J.L. Huang, B. Yen, H.C. Gu, Aging precipitation and recrystallization of rapidly solidified Cu–Cr–Zr–Mg alloy Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 265, pp. 262- 267 ,(1999) , 10.1016/S0921-5093(98)01149-6
B.J. McKay, P. Cizek, P. Schumacher, K.A.Q. O’Reilly, Heterogeneous nucleation in an Al–Ni–Si alloy studied using a metallic glass technique Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 304, pp. 240- 244 ,(2001) , 10.1016/S0921-5093(00)01476-3
Z.C. Zhong, X.Y. Jiang, A.L. Greer, Micro structure and hardening of Al-based nanophase composites Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. pp. 531- 535 ,(1997) , 10.1016/S0921-5093(97)80062-7
E. Karaköse, M. Keskin, Effect of solidification rate on the microstructure and microhardness of a melt-spun Al–8Si–1Sb alloy Journal of Alloys and Compounds. ,vol. 479, pp. 230- 236 ,(2009) , 10.1016/J.JALLCOM.2009.01.006
F. Audebert, C. Mendive, A. Vidal, Structure and mechanical behaviour of Al–Fe–X and Al–Ni–X rapidly solidified alloys Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 375, pp. 1196- 1200 ,(2004) , 10.1016/J.MSEA.2003.10.035
D. Srinivasan, K. Chattopadhyay, Hardness of high strength nanocomposite Al–X–Zr (X = Si,Cu,Ni) alloys Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 375, pp. 1228- 1234 ,(2004) , 10.1016/J.MSEA.2003.10.189
P Wesseling, BC Ko, John J Lewandowski, Quantitative evaluation of α-Al nano-particles in amorphous Al87Ni7Gd6––comparison of XRD, DSC, and TEM Scripta Materialia. ,vol. 48, pp. 1537- 1541 ,(2003) , 10.1016/S1359-6462(03)00127-1
G. Rosas, J. Reyes-Gasga, R. Pérez, Morphological characteristics of the rapidly and conventionally solidified alloys of the AlCuFe system Materials Characterization. ,vol. 58, pp. 765- 770 ,(2007) , 10.1016/J.MATCHAR.2006.12.004
H. Jones, Microstructure of rapidly solidified materials Materials Science and Engineering. ,vol. 65, pp. 145- 156 ,(1984) , 10.1016/0025-5416(84)90208-8