Using the liquid-chromatographic-fingerprint of sterols fraction to discriminate virgin olive from other edible oils.

作者: MG Bagur-González , E Pérez-Castaño , M Sánchez-Viñas , D Gázquez-Evangelista , None

DOI: 10.1016/J.CHROMA.2014.12.052

关键词: CanolaFraction (chemistry)ChromatographyPomaceMean squared errorCross-validationChemistryPrincipal component analysisRapeseedFingerprint

摘要: A method to discriminate virgin olive oil from other edible vegetable oils such as, sunflower, pomace olive, rapeseed, canola, corn and soybean, applying chemometric techniques the liquid chromatographic representative fingerprint of sterols fraction, is proposed. After a pre-treatment LC chromatogram data – including baseline correction, smoothing signal mean centering different unsupervised supervised pattern recognition procedures, as principal component analysis (PCA), hierarchical cluster (HCA), partial least squares-discriminant (PLSDA), have been applied. From information obtained PCA HCA, two groups can be clearly distinguished (virgin rest tested) which used between defined classes by means PLSDA model. Five latent variables (LVs) explained 76.88% X-block variance 95.47% block (γ-block) variance. root square error for calibration cross validation 0.10 0.22 respectively, confirmed these results prediction 0.15 evidences that classification model proposed presents an adequate capability. The contingency table also shows good performance model, proving capability LC-R-FpM, oils.

参考文章(41)
M. Forina, M. Casale, P. Oliveri, Application of Chemometrics to Food Chemistry Reference Module in Chemistry, Molecular Sciences and Chemical Engineering#R##N#Comprehensive Chemometrics#R##N#Chemical and Biochemical Data Analysis. ,vol. 4, pp. 75- 128 ,(2009) , 10.1016/B978-044452701-1.00124-1
Romà Tauler i Ferré, Steven D. Brown, Beata Walczak, Comprehensive Chemometrics: Set: Chemical and Biochemical Data Analysis Elsevier Science [Imprint]. ,(2009)
Youssef Ouni, Guido Flamini, Nabil Ben Youssef, Mokhtar Guerfel, Mokhtar Zarrouk, Sterolic composition and triacylglycerols of Oueslati virgin olive oil: comparison among different geographic areas International Journal of Food Science and Technology. ,vol. 46, pp. 1747- 1754 ,(2011) , 10.1111/J.1365-2621.2011.02677.X
James J., A. Paulina de la Mata, Nikolai A., Application of Chemometrics to the Interpretation of Analytical Separations Data Chemometrics in Practical Applications. ,(2012) , 10.5772/33960
D Gázquez-Evangelista, E Pérez-Castaño, M Sánchez-Viñas, MG Bagur-González, None, Using offline HPLC-GC-FID 4-Desmethylsterols Concentration Profiles, Combined with Chemometric Tools, to Discriminate Different Vegetable Oils Food Analytical Methods. ,vol. 7, pp. 912- 925 ,(2014) , 10.1007/S12161-013-9773-7
Michele De Luca, Wafa Terouzi, Giuseppina Ioele, Fouzia Kzaiber, Abdelkhalek Oussama, Filomena Oliverio, Romà Tauler, Gaetano Ragno, Derivative FTIR spectroscopy for cluster analysis and classification of morocco olive oils Food Chemistry. ,vol. 124, pp. 1113- 1118 ,(2011) , 10.1016/J.FOODCHEM.2010.07.010
Remo Bucci, Andrea D. Magrí, Antonio L. Magrí, Domenico Marini, Federico Marini, Chemical authentication of extra virgin olive oil varieties by supervised chemometric procedures Journal of Agricultural and Food Chemistry. ,vol. 50, pp. 413- 418 ,(2002) , 10.1021/JF010696V
Davide Ballabio, Viviana Consonni, Classification tools in chemistry. Part 1: linear models. PLS-DA Analytical Methods. ,vol. 5, pp. 3790- 3798 ,(2013) , 10.1039/C3AY40582F
Kornél Nagy, David Bongiorno, Giuseppe Avellone, Pasquale Agozzino, Leopoldo Ceraulo, Károly Vékey, High performance liquid chromatography-mass spectrometry based chemometric characterization of olive oils. Journal of Chromatography A. ,vol. 1078, pp. 90- 97 ,(2005) , 10.1016/J.CHROMA.2005.05.008