Quantum hydrodynamic model of density functional theory

作者: Zhenning Cai , Yuwei Fan , Ruo Li , Tiao Lu , Wenqi Yao

DOI: 10.1007/S10910-013-0176-1

关键词: Mathematical physicsQuantumMoment closureMathematicsDensity functional theorySchrödinger equationQuantum hydrodynamicsKohn–Sham equationsMoment (mathematics)Quantum mechanicsNonlinear systemApplied mathematicsGeneral chemistry

摘要: In this paper, we extend the method in Cai et al. (J Math Phys 53:103503, 2012) to derive a class of quantum hydrodynamic models for density-functional theory (DFT). The most popular implement DFT is Kohn–Sham equation, which transforms many-particle interacting system into fictitious non-interacting one-particle system. equation non-linear Schrodinger and corresponding Wigner can be derived as an alternative implementation DFT. We by moment closure following 2012). are globally hyperbolic thus locally wellposed. contribution potential turned nonlinear source term This work provides new possible way solve problems.

参考文章(38)
Robert G. Parr, Á. Nagy, Density functional theory as thermodynamics Proceedings of the Indian Academy of Sciences - Chemical Sciences. ,vol. 106, pp. 217- 227 ,(1994) , 10.1007/BF02840745
Xianlong Gao, Jianmin Tao, G. Vignale, I. V. Tokatly, Continuum mechanics for quantum many-body systems: Linear response regime Physical Review B. ,vol. 81, pp. 195106- ,(2010) , 10.1103/PHYSREVB.81.195106
Á. Nagy, Time-dependent density functional theory as a thermodynamics Journal of Molecular Structure-theochem. ,vol. 943, pp. 48- 52 ,(2010) , 10.1016/J.THEOCHEM.2009.10.010
Murray Gell-Mann, Keith A Brueckner, None, Correlation Energy of an Electron Gas at High Density Physical Review. ,vol. 106, pp. 364- 368 ,(1957) , 10.1103/PHYSREV.106.364
M. Hillery, R.F. O'Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: Fundamentals Physics Reports. ,vol. 106, pp. 121- 167 ,(1984) , 10.1016/0370-1573(84)90160-1
Richard Askey, Stephen Wainger, Mean Convergence of Expansions in Laguerre and Hermite Series American Journal of Mathematics. ,vol. 87, pp. 695- 708 ,(1965) , 10.2307/2373069
G. Manfredi, F. Haas, Self-consistent fluid model for a quantum electron gas Physical Review B. ,vol. 64, pp. 075316- ,(2001) , 10.1103/PHYSREVB.64.075316