Perturbation theory for Hermitian quadratic eigenvalue problem – damped and simultaneously diagonalizable systems

作者: Ninoslav Truhar , Zoran Tomljanović , Ren-Cang Li

DOI: 10.1016/J.AMC.2019.124921

关键词: PhysicsDiagonalizable matrixEigenvalue perturbationHermitian matrixQuadratic eigenvalue problemEigenvalues and eigenvectorsMathematical physicsMatrix (mathematics)Upper and lower boundsPositive-definite matrix

摘要: Abstract The main contribution of this paper is a novel approach to the perturbation theory structured Hermitian quadratic eigenvalue problems ( λ 2 M + D K ) x = 0 . We propose new concept without linearization, considering two structures: general (QEP) and simultaneously diagonalizable (SDQEP). Our first results are upper bounds for difference | ∥ X * ˜ 1 F − , where columns [ … k ] n linearly independent right eigenvectors positive definite matrix. As an application these we present bound SDQEP. third result lower sin Θ matrix canonical angles between eigensubspaces spanned by set SDQEP corresponding perturbed eigenvectors. quality mentioned have been illustrated numerical examples.

参考文章(20)
Ji-guang Sun, G. W. Stewart, Matrix perturbation theory ,(1990)
Ninoslav Truhar, Suzana Miodragović, Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem Applied Numerical Mathematics. ,vol. 98, pp. 106- 121 ,(2015) , 10.1016/J.APNUM.2015.08.006
P. Benner, Z. Tomljanović, N. Truhar, Dimension Reduction for Damping Optimization in Linear Vibrating Systems Journal of Applied Mathematics and Mechanics. ,vol. 91, pp. 179- 191 ,(2011) , 10.1002/ZAMM.201000077
Françoise Tisseur, Karl Meerbergen, The Quadratic Eigenvalue Problem SIAM Review. ,vol. 43, pp. 235- 286 ,(2001) , 10.1137/S0036144500381988
U. B. Holz, G. H. Golub, K. H. Law, A Subspace Approximation Method for the Quadratic Eigenvalue Problem SIAM Journal on Matrix Analysis and Applications. ,vol. 26, pp. 498- 521 ,(2005) , 10.1137/S0895479803423378
S. Adhikari, Damping modelling using generalized proportional damping Journal of Sound and Vibration. ,vol. 293, pp. 156- 170 ,(2006) , 10.1016/J.JSV.2005.09.034
Ninoslav Truhar, Krešimir Veselić, An Efficient Method for Estimating the Optimal Dampers' Viscosity for Linear Vibrating Systems Using Lyapunov Equation SIAM Journal on Matrix Analysis and Applications. ,vol. 31, pp. 18- 39 ,(2009) , 10.1137/070683052
S.M Shahruz, P Kessler, Residual motion in damped linear systems Journal of Sound and Vibration. ,vol. 276, pp. 1093- 1100 ,(2004) , 10.1016/J.JSV.2003.11.022
Ivica Nakić, Zoran Tomljanović, Ninoslav Truhar, Optimal Direct Velocity Feedback Applied Mathematics and Computation. ,vol. 225, pp. 590- 600 ,(2013) , 10.1016/J.AMC.2013.10.003