Relative perturbation theory for definite matrix pairs and hyperbolic eigenvalue problem

作者: Ninoslav Truhar , Suzana Miodragović

DOI: 10.1016/J.APNUM.2015.08.006

关键词:

摘要: In this paper, new relative perturbation bounds for the eigenvalues as well eigensubspaces are developed definite Hermitian matrix pairs and quadratic hyperbolic eigenvalue problem. First, we derive sin ? type theorems of ( A , B ) where both C m × nonsingular matrices with particular emphasis, is a diagonal ?1. Further, consider following problem µ 2 M + K v = 0 n given matrices. Using proper linearization develop corresponding considered The uniform depend only on M, C, K, perturbations ?M, ?C ?K standard gaps. quality illustrated through numerical examples.

参考文章(28)
Krešimar Veselić, Ivan Slapničar, Floating-point perturbations of Hermitian matrices Linear Algebra and its Applications. ,vol. 195, pp. 81- 116 ,(1993) , 10.1016/0024-3795(93)90258-P
Françoise Tisseur, Karl Meerbergen, The Quadratic Eigenvalue Problem SIAM Review. ,vol. 43, pp. 235- 286 ,(2001) , 10.1137/S0036144500381988
Ivica Nakić, Relative perturbation theory for a class of diagonalizable Hermitian matrix pairs Linear Algebra and its Applications. ,vol. 358, pp. 195- 217 ,(2003) , 10.1016/S0024-3795(01)00540-7
Luka Grubišić, Ninoslav Truhar, Krešimir Veselić, The rotation of eigenspaces of perturbed matrix pairs Linear Algebra and its Applications. ,vol. 436, pp. 4161- 4178 ,(2012) , 10.1016/J.LAA.2012.01.026
D. Steven Mackey, Niloufer Mackey, Christian Mehl, Volker Mehrmann, Vector Spaces of Linearizations for Matrix Polynomials SIAM Journal on Matrix Analysis and Applications. ,vol. 28, pp. 971- 1004 ,(2006) , 10.1137/050628350
James Demmel, Krešimir Veselic, Jacobi's Method Is More Accurate Than Qr ,(2011)
I. Gohberg, P. Lancaster, L Rodman, Factorization of selfadjoint matrix polynomials with constant signature Linear & Multilinear Algebra. ,vol. 11, pp. 209- 224 ,(1982) , 10.1080/03081088208817445
Rajendra Bhatia, Ren-Cang Li, On perturbations of matrix pencils with real spectra. II Mathematics of Computation. ,vol. 65, pp. 637- 645 ,(1996) , 10.1090/S0025-5718-96-00699-0
Jesse L. Barlow, Ivan Slapničar, Optimal perturbation bounds for the Hermitian eigenvalue problem Linear Algebra and its Applications. ,vol. 309, pp. 19- 43 ,(2000) , 10.1016/S0024-3795(99)00268-2