Floating-point perturbations of Hermitian matrices

作者: Krešimar Veselić , Ivan Slapničar

DOI: 10.1016/0024-3795(93)90258-P

关键词:

摘要: Abstract We consider the perturbation properties of eigensolution Hermitian matrices. For matrix entries and eigenvalues we use realistic “floating-point” error measure |δa/a|. Recently, Demmel Veselic considered same problem for a positive definite H, showing that floating-point theory holds with constants depending on condition number A=DHD, where Aii=1 D is diagonal scaling. study general case along lines, thus obtaining new classes well-behaved matrices pairs. Our applicable to already known class scaled diagonally dominant as well given by factors—like those in symmetric indefinite decompositions. also obtain norm estimates perturbations eigenprojections, show some our techniques extend non-Hermitian However, unlike case, are still unable describe simply set all

参考文章(11)
K. P. Hadeler, Variationsprinzipien bei nichtlinearen Eigenwertaufgaben Archive for Rational Mechanics and Analysis. ,vol. 30, pp. 297- 307 ,(1968) , 10.1007/BF00281537
J. R. Bunch, B. N. Parlett, Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations SIAM Journal on Numerical Analysis. ,vol. 8, pp. 639- 655 ,(1971) , 10.1137/0708060
James Demmel, Krešimir Veselic, Jacobi's Method Is More Accurate Than Qr ,(2011)
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
James Demmel, W. Kahan, Accurate singular values of bidiagonal matrices Siam Journal on Scientific and Statistical Computing. ,vol. 11, pp. 873- 912 ,(1990) , 10.1137/0911052
A. van der Sluis, Condition numbers and equilibration of matrices Numerische Mathematik. ,vol. 14, pp. 14- 23 ,(1969) , 10.1007/BF02165096
R. Onn, A.O. Steinhardt, A.W. Bojanczyk, The hyberbolic singular value decomposition and applications IEEE Transactions on Signal Processing. ,vol. 39, pp. 1575- 1588 ,(1990) , 10.1109/78.134396
Gene H Golub, Charles F Van Loan, Matrix computations ,(1983)