RECENT APPLICATIONS OF THE DMRG METHOD

作者: KAREN HALLBERG

DOI: 10.1142/S0217979206035102

关键词: Degrees of freedomPhysicsSpectral propertiesComplex problemsDensity matrix renormalization groupHubbard modelDynamical mean field theoryStatistical physics

摘要: Since its inception, the DMRG method has been a very powerful tool for calculation of physical properties low-dimensional strongly correlated systems. It adapted to obtain dynamical and consider finite temperature, time-dependent problems, bosonic degrees freedom, treatment classical problems non-equilibrium systems, among others. We will briefly review then concentrate on latest developments, describing some recent successful applications. In particular we show how can be used together with Dynamical Mean Field Theory (DMFT) solve associated impurity problem in infinite-dimensional Hubbard model. This is spectral With this algorithm, more complex having larger number freedom considered finite-size effects minimized.

参考文章(58)
Paolo Grigolini, Myron W. Evans, Giuseppe Pastori Parravicini, Memory function approaches to stochastic problems in condensed matter Wiley. ,(1985)
Magnetism: Molecules to Materials IV Magnetism: Molecules to Materials IV. pp. 496- ,(2001) , 10.1002/9783527620548
G. Grosso, G. Pastori Parravicini, Memory Function Methods in Solid State Physics Advances in Chemical Physics. ,vol. 62, pp. 133- 181 ,(2007) , 10.1002/9780470142868.CH4
Michael A. Nielsen, Tobias J. Osborne, Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization Quantum Information Processing. ,vol. 1, pp. 45- 53 ,(2002) , 10.1023/A:1019601218492
Qimiao Si, M. J. Rozenberg, G. Kotliar, A. E. Ruckenstein, Correlation induced insulator to metal transitions. Physical Review Letters. ,vol. 72, pp. 2761- 2764 ,(1994) , 10.1103/PHYSREVLETT.72.2761
R. Bulla, T. A. Costi, D. Vollhardt, Finite-temperature numerical renormalization group study of the Mott transition Physical Review B. ,vol. 64, pp. 045103- ,(2001) , 10.1103/PHYSREVB.64.045103