A multigrid method for the Cahn-Hilliard equation with obstacle potential

作者: L’ubomír Baňas , Robert Nürnberg

DOI: 10.1016/J.AMC.2009.03.036

关键词: Partial differential equationFinite element methodNumerical analysisDifferential equationCahn–Hilliard equationInitial value problemOrder of accuracyMathematicsMultigrid methodMathematical analysis

摘要: We present a multigrid finite element method for the deep quench obstacle Cahn-Hilliard equation. The non-smooth nature of this highly nonlinear fourth order partial differential equation make problem particularly challenging. exhibits mesh-independent convergence properties in practice arbitrary time step sizes. In addition, numerical evidence shows that behaviour extends to small values interfacial parameter @c. Several examples are given, including comparisons with existing alternative solution methods

参考文章(26)
J. F. Blowey, C. M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis European Journal of Applied Mathematics. ,vol. 3, pp. 147- 179 ,(1991) , 10.1017/S0956792500000759
Carsten Gräser, Ralf Kornhuber, On Preconditioned Uzawa-type Iterations for a Saddle Point Problem with Inequality Constraints Lecture Notes in Computational Science and Engineering. pp. 91- 102 ,(2007) , 10.1007/978-3-540-34469-8_8
Ralf Kornhuber, Carsten Gräser, Multigrid Methods for Obstacle Problems Global Science Press. ,(2008)
John W Cahn, On spinodal decomposition Acta Metallurgica. ,vol. 9, pp. 795- 801 ,(1961) , 10.1016/0001-6160(61)90182-1
M. Molls, A. A. Haspels, C. Streffer, M. Thiery, K. J. Beck, T. Mann, A. E. Schindler, M. Breckwoldt, F. Lehmann, H. Schmidt-Eimen, Hafez A. Mezkel, H. M. Beier, A. Caufriez, M. L'Hermite, S. T. Shaw, D. L. Moyer, B. G. Boving, J. Bodenstein, Joan Fu, M. I. Sherman, Renée L. Boving, S. B. Atienza-Samols, F. Hefnawi, A. Grösser, K. S. Moghissi, H. Ludwig, M. Badawi, Friedrich G. Kuppe, K. H. Broer, R. P. Bernard, D. van Beuningen, L. Mettler, K. Ohlsson, D. Krebs, I. Schier, R. Göser, H. Schiessler, H. Fritz, V. Frick, P. F. Tauber, With Contributions by ,(1978)
Luciano Modica, Gradient theory of phase transitions with boundary contact energy Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 4, pp. 487- 512 ,(1987) , 10.1016/S0294-1449(16)30360-2
J. W. Cahn, C. M. Elliott, A. Novick-Cohen, The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature European Journal of Applied Mathematics. ,vol. 7, pp. 287- 301 ,(1996) , 10.1017/S0956792500002369
Xiaobing Feng, Andreas Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem Interfaces and Free Boundaries. ,vol. 7, pp. 1- 28 ,(2005) , 10.4171/IFB/111
Yongmin Zhang, Multilevel projection algorithm for solving obstacle problems Computers & Mathematics With Applications. ,vol. 41, pp. 1505- 1513 ,(2001) , 10.1016/S0898-1221(01)00115-8