On Preconditioned Uzawa-type Iterations for a Saddle Point Problem with Inequality Constraints

作者: Carsten Gräser , Ralf Kornhuber

DOI: 10.1007/978-3-540-34469-8_8

关键词:

摘要: We consider preconditioned Uzawa iterations for a saddle point problem with inequality constraints as arising from an implicit time discretization of the Cahn-Hilliard equation obstacle potential. present new class preconditioners based on linear Schur complements associated successive approximations coincidence set. In numerical experiments, we found superlinear convergence and finite termination.

参考文章(23)
Stephen J. Wright, Primal-Dual Interior-Point Methods ,(1987)
Ivar Ekeland, Roger Téman, Convex analysis and variational problems ,(1976)
Ralf Kornhuber, Monotone multigrid methods for elliptic variational inequalities I Numerische Mathematik. ,vol. 69, pp. 167- 184 ,(1994) , 10.1007/BF03325426
Howard C. Elman, Gene H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems SIAM Journal on Numerical Analysis. ,vol. 31, pp. 1645- 1661 ,(1994) , 10.1137/0731085
Walter Zulehner, Analysis of iterative methods for saddle point problems: a unified approach Mathematics of Computation. ,vol. 71, pp. 479- 505 ,(2002) , 10.1090/S0025-5718-01-01324-2
James H. Bramble, Joseph E. Pasciak, Apostol T. Vassilev, Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems SIAM Journal on Numerical Analysis. ,vol. 34, pp. 1072- 1092 ,(1997) , 10.1137/S0036142994273343
R. Glowinski, Jacques Louis Lions, Raymond Trémolières, Numerical Analysis of Variational Inequalities ,(1981)
Xiaojun Chen, On preconditioned Uzawa methods and SOR methods for saddle-point problems Journal of Computational and Applied Mathematics. ,vol. 100, pp. 207- 224 ,(1998) , 10.1016/S0377-0427(98)00197-6