Velocity-Gradient Dynamics in Turbulence: Effect of Viscosity and Forcing

作者: Eunhwan Jeong , Sharath S. Girimaji

DOI: 10.1007/S00162-002-0084-7

关键词: SingularityTurbulenceVelocity gradientMechanicsStrain rate tensorK-epsilon turbulence modelEuler equationsClassical mechanicsMathematicsVorticityEuler's formula

摘要: The restricted Euler equation is a promising but incomplete model for velocity-gradient dynamics in turbulent flows. While it captures many of the geometric features vorticity vector and strain rate tensor, viscous anisotropic pressure Hessian effects are not accounted satisfactorily. Inadequate viscous-effect modeling causes velocity gradients to diverge finite time, rendering unsuitable practical applications. We perform Lagrangian frame analysis comprehend fully physics relaxation time scale propose variable time-scale that can adequately account deformation history. Most importantly, finite-time singularity (divergence gradients) problem resolved with present model. also forcing used numerical simulations sustain stationary isotropic turbulence. Detailed comparison new DNS data reveals good agreement.

参考文章(13)
Sharath S. Girimaji, Modeling Turbulent Scalar Mixing as Enhanced Diffusion Combustion Science and Technology. ,vol. 97, pp. 85- 98 ,(1994) , 10.1080/00102209408935369
J. Soria, R. Sondergaard, B. J. Cantwell, M. S. Chong, A. E. Perry, A study of the fine‐scale motions of incompressible time‐developing mixing layers Physics of Fluids. ,vol. 6, pp. 871- 884 ,(1994) , 10.1063/1.868323
M. S. Chong, A. E. Perry, B. J. Cantwell, A general classification of three-dimensional flow fields Physics of Fluids. ,vol. 2, pp. 765- 777 ,(1990) , 10.1063/1.857730
Brian J. Cantwell, Exact solution of a restricted Euler equation for the velocity gradient tensor Physics of Fluids. ,vol. 4, pp. 782- 793 ,(1992) , 10.1063/1.858295
Jesus Martin, Andrew Ooi, Cesar Dopazo, M. S. Chong, Julio Soria, The inverse diffusion time scale of velocity gradients in homogeneous isotropic turbulence Physics of Fluids. ,vol. 9, pp. 814- 816 ,(1997) , 10.1063/1.869179
S. S. Girimaji, S. B. Pope, A diffusion model for velocity gradients in turbulence Physics of Fluids. ,vol. 2, pp. 242- 256 ,(1990) , 10.1063/1.857773
Jesús Martı́n, Andrew Ooi, M. S. Chong, Julio Soria, Dynamics of the velocity gradient tensor invariants in isotropic turbulence Physics of Fluids. ,vol. 10, pp. 2336- 2346 ,(1998) , 10.1063/1.869752
Wm. T. Ashurst, A. R. Kerstein, R. M. Kerr, C. H. Gibson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence Physics of Fluids. ,vol. 30, pp. 2343- 2353 ,(1987) , 10.1063/1.866513