Okhuma Graphs and Coloured Chains

作者: M. Giraudet , J. K. Truss

DOI: 10.1007/S11083-004-7467-X

关键词: Edge-transitive graphInner automorphismGraph automorphismVertex-transitive graphDigraphAutomorphism groupSymmetric graphCombinatoricsMathematicsGraph

摘要: A structure is said to be ‘Okhuma’ if its automorphism group acts on it uniquely transitively, or slightly generalizing this, transitively each orbit. In this latter case we can think of the orbits as ‘colours’. Okhuma chains and related structures have been studied by others. Here generalize their results coloured chains, give some constructions resulting from graphs digraphs.

参考文章(5)
Tadashi Ohkuma, Sur quelques ensembles ordonnés linéairement Proceedings of the Japan Academy. ,vol. 30, pp. 805- 808 ,(1954) , 10.3792/PJA/1195525915
Charles Holland, Transitive lattice-ordered permutation groups Mathematische Zeitschrift. ,vol. 87, pp. 420- 433 ,(1965) , 10.1007/BF01111722
L. Babai, Finite digraphs with given regular automorphism groups Periodica Mathematica Hungarica. ,vol. 11, pp. 257- 270 ,(1980) , 10.1007/BF02107568
A. M. W. Glass, Yuri Gurevich, W. Charles Holland, Saharon Shelah, Rigid homogeneous chains Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 89, pp. 07- 17 ,(1981) , 10.1017/S0305004100057881