Rigid homogeneous chains

作者: A. M. W. Glass , Yuri Gurevich , W. Charles Holland , Saharon Shelah

DOI: 10.1017/S0305004100057881

关键词: Elementary equivalenceTransitive relationCombinatoricsMathematicsAutomorphismSet (abstract data type)Regular polygonChain (algebraic topology)CardinalityCongruence relation

摘要: Classifying (unordered) sets by the elementary (first order) properties of their automorphism groups was undertaken in (7), (9) and (11). For example, if Ω is a set whose group, S (Ω), satisfies then has cardinality at most ℵ 0 conversely (see (7)). We are interested classifying homogeneous totally ordered (homogeneous chains, for short) groups. (Note that we use ‘homogeneous’ here to mean group transitive.) This study begun (4) (5). any Ω, (Ω) primitive (i.e. no congruences). However, chain need not be o -primitive it may have convex Fortunately, ‘ -primitive’ property can captured first order sentence automorphisms chains. Hence our general problem falls naturally into two parts. The classify chains -primitive; second determine how components related arbitrary elementarily equivalent.

参考文章(11)
Wanda Szmielew, Elementary properties of Abelian groups Fundamenta Mathematicae. ,vol. 41, pp. 203- 271 ,(1955) , 10.4064/FM-41-2-203-271
A. M. W. Glass, Ordered Permutation Groups ,(1982)
Tadashi Ohkuma, Sur quelques ensembles ordonnés linéairement Proceedings of the Japan Academy. ,vol. 30, pp. 805- 808 ,(1954) , 10.3792/PJA/1195525915
Ben Dushnik, E. W. Miller, Concerning similarity transformations of linearly ordered sets Bulletin of the American Mathematical Society. ,vol. 46, pp. 322- 326 ,(1940) , 10.1090/S0002-9904-1940-07213-1
Saharon Shelah, First order theory of permutation groups Israel Journal of Mathematics. ,vol. 15, pp. 437- 441 ,(1973) , 10.1007/BF02757083
Ralph McKenzie, On elementary types of symmetric groups Algebra Universalis. ,vol. 1, pp. 13- 20 ,(1971) , 10.1007/BF02944950
Abraham Robinson, Elias Zakon, Elementary properties of ordered abelian groups Transactions of the American Mathematical Society. ,vol. 96, pp. 222- 236 ,(1960) , 10.1090/S0002-9947-1960-0114855-0
A. G. Pinus, Elementary definability of symmetry groups Algebra Universalis. ,vol. 3, pp. 59- 66 ,(1973) , 10.1007/BF02945104
James Baumgartner, Αll $ℵ_1$-dense sets of reals can be isomorphic Fundamenta Mathematicae. ,vol. 79, pp. 101- 106 ,(1973) , 10.4064/FM-79-2-101-106