LATTICE-ORDERED GROUPS WHOSE LATTICES DETERMINE THEIR ADDITIONS

作者: Paul F. Conrad , Michael R. Darnel

DOI: 10.1090/S0002-9947-1992-1031238-0

关键词:

摘要: In this paper it is shown that several large and important classes of lattice-ordered groups, including the free abelian have their group operations completely determined by underlying lattices, or de- termined up to /-isomorphism. integers Z with usual order <, 1 covers 0. From simple fact, easy see (Z, <) a uniquely transitive chain as defined Ohkuma (24) singular element. Either property enough show that, having chosen 0 be identity Z, addition specified chain. paper, we these properties are sufficiently general pow- erful prove many familiar groups also lattice choice an identity. particular, will Theorem A. Every has unique addition. B. If G archimedean if for any < g e G, there exists element s such g, then

参考文章(19)
A. M. W. Glass, Ordered Permutation Groups ,(1982)
Alain Bigard, Samuel Wolfenstein, Klaus Keimel, Groupes et Anneaux Réticulés Lecture Notes in Mathematics. ,(1977) , 10.1007/BFB0067004
Paul F. Conrad, Lattice ordered groups s.n.]. ,(1970)
P. F. Conrad, J. E. Diem, The ring of polar preserving endomorphisms of an abelian lattice-ordered group Illinois Journal of Mathematics. ,vol. 15, pp. 222- 240 ,(1971) , 10.1215/IJM/1256052710
Paul Conrad, group Duke Mathematical Journal. ,vol. 38, pp. 151- 160 ,(1971) , 10.1215/S0012-7094-71-03819-1
Paul Conrad, Paul McCarthy, The Structure off-Algebras Mathematische Nachrichten. ,vol. 58, pp. 169- 191 ,(1973) , 10.1002/MANA.19730580111
Tadashi Ohkuma, Sur quelques ensembles ordonnés linéairement Proceedings of the Japan Academy. ,vol. 30, pp. 805- 808 ,(1954) , 10.3792/PJA/1195525915
M. Jambu-Giraudet, Bi-interpretable groups and lattices Transactions of the American Mathematical Society. ,vol. 278, pp. 253- 269 ,(1983) , 10.1090/S0002-9947-1983-0697073-2
S. J. Bernau, Unique Representation of Archimedean Lattice Groups and Normal Archimedean Lattice Rings Proceedings of the London Mathematical Society. ,vol. s3-16, pp. 384- 384 ,(1966) , 10.1112/PLMS/S3-16.1.384
Paul Conrad, Donald McAlister, The Completion of a Lattice Ordered Group Journal of The Australian Mathematical Society. ,vol. 9, pp. 182- 208 ,(1969) , 10.1017/S1446788700005760