Approximate Solutions for Nonlinear Initial Value Problems Using the Modified Variational Iteration Method

作者: Taher A. Nofal

DOI: 10.1155/2012/370843

关键词: Wave resonanceNonlinear systemVariational iteration methodMathematicsInitial value problemMathematical analysis

摘要: We have used the modified variational iteration method (MVIM) to find approximate solutions for some nonlinear initial value problems in mathematical physics, via Burgers-Fisher equation, Kuramoto-Sivashinsky coupled Schrodinger-KdV equations, and long-short wave resonance equations together with conditions. The results of these reveal that is very powerful, effective, convenient, quite accurate systems equations. It predicted this can be found widely applicable engineering physics.

参考文章(63)
Zhengdi Zhang, Qinsheng Bi, Bifurcations of a Generalized Camassa-Holm Equation International Journal of Nonlinear Sciences and Numerical Simulation. ,vol. 6, pp. 81- 86 ,(2005) , 10.1515/IJNSNS.2005.6.1.81
J. Biazar, M. Eslami, H. Ghazvini, Homotopy Perturbation Method for Systems of Partial Differential Equations International Journal of Nonlinear Sciences and Numerical Simulation. ,vol. 8, pp. 413- 418 ,(2007) , 10.1515/IJNSNS.2007.8.3.413
Oktay Pashaev, Gamze Tanoğlu, Vector shock soliton and the Hirota bilinear method Chaos, Solitons & Fractals. ,vol. 26, pp. 95- 105 ,(2005) , 10.1016/J.CHAOS.2004.12.021
JI-HUAN HE, SOME ASYMPTOTIC METHODS FOR STRONGLY NONLINEAR EQUATIONS International Journal of Modern Physics B. ,vol. 20, pp. 1141- 1199 ,(2006) , 10.1142/S0217979206033796
Shu-fang Deng, Bäcklund transformation and soliton solutions for KP equation Chaos Solitons & Fractals. ,vol. 25, pp. 475- 480 ,(2005) , 10.1016/J.CHAOS.2004.11.019
Ji-Huan He, Variational iteration method – a kind of non-linear analytical technique: some examples International Journal of Non-linear Mechanics. ,vol. 34, pp. 699- 708 ,(1999) , 10.1016/S0020-7462(98)00048-1