Vector shock soliton and the Hirota bilinear method

作者: Oktay Pashaev , Gamze Tanoğlu

DOI: 10.1016/J.CHAOS.2004.12.021

关键词: Bilinear interpolationTime derivativeProperties of polynomial rootsMathematical analysisStep functionNonlinear systemMathematicsQuadratic equationSolitonFixed pointGeneral Mathematics

摘要: Abstract The Hirota bilinear method is applied to find an exact shock soliton solution of the system reaction–diffusion equations for n-component vector order parameter, with reaction part in form third polynomial, determined by three distinct constant vectors. representation derived extracting one roots (unstable general), which allows us reduce cubic nonlinearity a quadratic one. solution, implementing transition between other two roots, as fixed points potential from continuum set values, constructed simple way. In our approach, velocity truncating perturbation expansion and it found terms all roots. Shock solitons extensions model, including second time derivative term nonlinear transport are derived. Numerical solutions illustrating generation solitary wave initial step function, depending polynomial given.

参考文章(14)
R. Hirota, Direct Methods in Soliton Theory Solitons. Series: Topics in Current Physics. ,vol. 17, pp. 157- 176 ,(1980) , 10.1007/978-3-642-81448-8_5
F. Schl�gl, Chemical reaction models for non-equilibrium phase transitions European Physical Journal. ,vol. 253, pp. 147- 161 ,(1972) , 10.1007/BF01379769
Roman M. Cherniha, New exact solutions of nonlinear reaction-diffusion equations Reports on Mathematical Physics. ,vol. 41, pp. 333- 349 ,(1998) , 10.1016/S0034-4877(98)80020-7
Takuji Kawahara, Mitsuhiro Tanaka, Interactions of traveling fronts: an exact solution of a nonlinear diffusion equation Physics Letters A. ,vol. 97, pp. 311- 314 ,(1983) , 10.1016/0375-9601(83)90648-5
F. Schlögl, R. Stephen Berry, Small roughness fluctuations in the layer between two phases Physical Review A. ,vol. 21, pp. 2078- 2081 ,(1980) , 10.1103/PHYSREVA.21.2078
M ABLOWITZ, A ZEPPETELLA, Explicit solutions of Fisher's equation for a special wave speed Bulletin of Mathematical Biology. ,vol. 41, pp. 835- 840 ,(1979) , 10.1016/S0092-8240(79)80020-8
Richard FitzHugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane Biophysical Journal. ,vol. 1, pp. 445- 466 ,(1961) , 10.1016/S0006-3495(61)86902-6
A.H. Khater, W. Malfliet, D.K. Callebaut, E.S. Kamel, The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction-diffusion equations Chaos Solitons & Fractals. ,vol. 14, pp. 513- 522 ,(2002) , 10.1016/S0960-0779(01)00247-8