3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning.

作者: Bilel Daoud , Ken’ichi Morooka , Ryo Kurazume , Farhat Leila , Wafa Mnejja

DOI: 10.1016/J.COMPMEDIMAG.2019.101644

关键词: SegmentationNasopharyngeal carcinomaDeep learningCascadeImage segmentationConvolutional neural network3d segmentationArtificial intelligencePattern recognitionComputer science

摘要: Abstract In the paper, we propose a new deep learning-based method for segmenting nasopharyngeal carcinoma (NPC) in nasopharynx from three orthogonal CT images. The proposed introduces cascade strategy composed of two-phase manners. images, there are organs, called non-target which NPC never invades. Therefore, first phase is to detect and eliminate organ regions second phase, extracted remained Convolutional neural networks (CNNs) applied organs NPCs. system determines final segmentation by integrating results obtained coronal, axial sagittal Moreover, construct two CNN-based detection systems using one kind overlapping patches with fixed size various different sizes. From experiments images 70 patients, our systems, especially patches, achieves best performance detecting compared conventional methods.

参考文章(26)
Peter Naylor, Marick Lae, Fabien Reyal, Thomas Walter, Nuclei segmentation in histopathology images using deep neural networks 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). pp. 933- 936 ,(2017) , 10.1109/ISBI.2017.7950669
George Fountzilas, Amanda Psyrri, Eleni Giannoulatou, Ioannis Tikas, Kyriaki Manousou, Dimitra Rontogianni, Elisabeta Ciuleanu, Tudor Ciuleanu, Liliana Resiga, Thomas Zaramboukas, Kyriaki Papadopoulou, Mattheos Bobos, Sofia Chrisafi, Eleftheria Tsolaki, Konstantinos Markou, Evangelos Giotakis, Angelos Koutras, Elsa Psoma, Anna Kalogera-Fountzila, Maria Skondra, Christina Bamia, Dimitrios Pectasides, Vassiliki Kotoula, Prevalent somatic BRCA1 mutations shape clinically relevant genomic patterns of nasopharyngeal carcinoma in Southeast Europe. International Journal of Cancer. ,vol. 142, pp. 66- 80 ,(2018) , 10.1002/IJC.31023
Kuo Men, Xinyuan Chen, Ye Zhang, Tao Zhang, Jianrong Dai, Junlin Yi, Yexiong Li, Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images Frontiers in Oncology. ,vol. 7, pp. 315- ,(2017) , 10.3389/FONC.2017.00315
Yan Wang, Chen Zu, Guangliang Hu, Yong Luo, Zongqing Ma, Kun He, Xi Wu, Jiliu Zhou, Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications Neural Processing Letters. ,vol. 48, pp. 1323- 1334 ,(2018) , 10.1007/S11063-017-9759-3
Zongqing Ma, Xi Wu, Qi Song, Yong Luo, Yan Wang, Jiliu Zhou, Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Experimental and Therapeutic Medicine. ,vol. 16, pp. 2511- 2521 ,(2018) , 10.3892/ETM.2018.6478
Lindsey A. Torre, Freddie Bray, Rebecca L. Siegel, Jacques Ferlay, Joannie Lortet-Tieulent, Ahmedin Jemal, Global cancer statistics, 2012 CA: A Cancer Journal for Clinicians. ,vol. 65, pp. 87- 108 ,(2015) , 10.3322/CAAC.21262
Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger, Hayit Greenspan, Modeling the Intra-class Variability for Liver Lesion Detection using a Multi-class Patch-based CNN International Workshop on Patch-based Techniques in Medical Imaging. pp. 129- 137 ,(2017) , 10.1007/978-3-319-67434-6_15
Yukai Wang, Qizhi Teng, Xiaohai He, Junxi Feng, Tingrong Zhang, CT-image of rock samples super resolution using 3D convolutional neural network Computers & Geosciences. ,vol. 133, pp. 104314- ,(2019) , 10.1016/J.CAGEO.2019.104314
Alan Gibb, Nasopharyngeal Carcinoma ,(1999)