Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes

作者: Jerome T. Babauta , Haluk Beyenal

DOI: 10.1002/BIT.25105

关键词: PseudocapacitanceGeobacter sulfurreducensAnalytical chemistryDielectric spectroscopyChemical engineeringElectron transferBiofilmMass transferRotating disk electrodeChemistryGeobacter

摘要: Electrochemical impedance spectroscopy has received significant attention recently as a method to measure electrochemical parameters of Geobacter sulfurreducens biofilms. Here, we use demonstrate the effect mass transfer processes on electron by G. biofilms grown in situ an electrode that was subsequently rotated. By rotating up 530 rpm, could control microscale gradients formed inside A 24% increase above baseline 82 µA be achieved with rotation rate 530 rpm. comparison, observed 340% using soluble redox mediator (ferrocyanide) limited transfer. Control also used quantify change biofilm during transition from turnover non-turnover. We found only one element impedance, interfacial resistance, changed significantly 900 4,200 Ω under and non-turnover conditions, respectively. ascribed this resistance overcome metabolism estimate value 3,300 Ω. Additionally, non-turnover, developed pseudocapacitive behavior indicative bound mediators. Pseudocapacitance estimated at 740 µF unresponsive electrode. The indicators acetate limitations Biotechnol. Bioeng. 2014;111: 285–294. © 2013 Wiley Periodicals, Inc.

参考文章(21)
Pankaj Agarwal, Mark E. Orazem, Luis H. Garcia‐Rubio, Measurement Models for Electrochemical Impedance Spectroscopy I . Demonstration of Applicability Journal of The Electrochemical Society. ,vol. 139, pp. 1917- 1927 ,(1992) , 10.1149/1.2069522
Abraham Esteve-Núñez, Julian Sosnik, Pablo Visconti, Derek R. Lovley, Fluorescent properties of c‐type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens Environmental Microbiology. ,vol. 10, pp. 497- 505 ,(2008) , 10.1111/J.1462-2920.2007.01470.X
Philip S. Stewart, Mini-review: Convection around biofilms Biofouling. ,vol. 28, pp. 187- 198 ,(2012) , 10.1080/08927014.2012.662641
Sokhee Jung, Matthew M. Mench, John M. Regan, Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH. Environmental Science & Technology. ,vol. 45, pp. 9069- 9074 ,(2011) , 10.1021/ES201737G
Rachel M. Snider, Sarah M. Strycharz-Glaven, Stanislav D. Tsoi, Jeffrey S. Erickson, Leonard M. Tender, Long-range electron transport in Geobacter sulfurreducens biofilms is redox gradient-driven. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 15467- 15472 ,(2012) , 10.1073/PNAS.1209829109
Nikhil S. Malvankar, Tünde Mester, Mark T. Tuominen, Derek R. Lovley, Supercapacitors Based on c‐Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria ChemPhysChem. ,vol. 13, pp. 463- 468 ,(2012) , 10.1002/CPHC.201100865
Xochitl Dominguez-Benetton, Surajbhan Sevda, Karolien Vanbroekhoven, Deepak Pant, The accurate use of impedance analysis for the study of microbial electrochemical systems. Chemical Society Reviews. ,vol. 41, pp. 7228- 7246 ,(2012) , 10.1039/C2CS35026B
Zhen He, Florian Mansfeld, Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies Energy and Environmental Science. ,vol. 2, pp. 215- 219 ,(2009) , 10.1039/B814914C
R. S. Renslow, J. T. Babauta, P. D. Majors, H. Beyenal, Diffusion in biofilms respiring on electrodes Energy and Environmental Science. ,vol. 6, pp. 595- 607 ,(2013) , 10.1039/C2EE23394K
César I Torres, Andrew Kato Marcus, Bruce E Rittmann, None, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnology and Bioengineering. ,vol. 100, pp. 872- 881 ,(2008) , 10.1002/BIT.21821