An Ensemble Pruning Primer

作者: Grigorios Tsoumakas , Ioannis Partalas , Ioannis Vlahavas

DOI: 10.1007/978-3-642-03999-7_1

关键词: Machine learningArtificial intelligenceHill climbingTaxonomy (general)Key (cryptography)Pruning (decision trees)Point (typography)Computer scienceReduction (complexity)

摘要: Ensemble pruning deals with the reduction of an ensemble predictive models in order to improve its efficiency and performance. The last 12 years a large number methods have been proposed. This work proposes taxonomy for their organization reviews important representative each category. It abstracts key components discusses main advantages disadvantages. We hope that this will serve as good starting point reference researchers working on development new methods.

参考文章(40)
Ioannis Partalas, Ioannis P. Vlahavas, Grigorios Tsoumakas, Focused Ensemble Selection: A Diversity-Based Method for Greedy Ensemble Selection european conference on artificial intelligence. pp. 117- 121 ,(2008) , 10.3233/978-1-58603-891-5-117
David H. Wolpert, Original Contribution: Stacked generalization Neural Networks. ,vol. 5, pp. 241- 259 ,(1992) , 10.1016/S0893-6080(05)80023-1
Christopher J. C. H. Watkins, Peter Dayan, Technical Note : \cal Q -Learning Machine Learning. ,vol. 8, pp. 279- 292 ,(1992) , 10.1007/BF00992698
Ioannis Partalas, Grigorios Tsoumakas, Ioannis Katakis, Ioannis Vlahavas, Ensemble Pruning Using Reinforcement Learning Advances in Artificial Intelligence. pp. 301- 310 ,(2006) , 10.1007/11752912_31
Thomas G. Dietterich, Machine-Learning Research Ai Magazine. ,vol. 18, pp. 97- 136 ,(1997) , 10.1609/AIMAG.V18I4.1324
Thomas G. Dietterich, Ensemble Methods in Machine Learning Multiple Classifier Systems. pp. 1- 15 ,(2000) , 10.1007/3-540-45014-9_1
Thomas G. Dietterich, Dragos D. Margineantu, Pruning Adaptive Boosting international conference on machine learning. pp. 211- 218 ,(1997)
Zhi-Hua Zhou, Wei Tang, Selective ensemble of decision trees granular computing. pp. 476- 483 ,(2003) , 10.1007/3-540-39205-X_81
Grigorios Tsoumakas, Lefteris Angelis, Ioannis Vlahavas, Selective fusion of heterogeneous classifiers intelligent data analysis. ,vol. 9, pp. 511- 525 ,(2005) , 10.3233/IDA-2005-9602
Bart Bakker, Tom Heskes, Clustering ensembles of neural network models Neural Networks. ,vol. 16, pp. 261- 269 ,(2003) , 10.1016/S0893-6080(02)00187-9