DOI: 10.1137/0719066
关键词: Hagen–Poiseuille flow from the Navier–Stokes equations 、 Lagrange multiplier 、 Mathematics 、 Reynolds-averaged Navier–Stokes equations 、 Navier–Stokes equations 、 Local convergence 、 Mathematical analysis 、 Rate of convergence 、 Galerkin method 、 Non-dimensionalization and scaling of the Navier–Stokes equations
摘要: A Galerkin–Lagrange multiplier formulation is used for the numerical solution of stationary Navier–Stokes equations, in order to avoid construction zero-divergence elements. The based on different approximating spaces velocity field and pressure. Optimal rate convergence estimates are derived. Moreover, a Galerkin–Newton scheme nonlinear equations shown be quadratically locally convergent. Another linearly globally