On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics

作者: Max D. Gunzburger , Amnon J. Meir , Janet S. Peterson

DOI: 10.1090/S0025-5718-1991-1066834-0

关键词:

摘要: The authors consider the equations of stationary, incompressible magneto-hydrodynamics posed in a bounded domain three dimensions and treat full, coupled system with inhomogeneous boundary conditions. Under certain conditions on data, they show that existence uniqueness solution weak formulation can be guaranteed. They discuss finite element discretization prove an optimal estimate for error approximate solution.

参考文章(18)
J. A. Shercliff, J. Gillis, A Textbook of Magnetohydrodynamics ,(1965)
William F. Hughes, F. J. Young, The electromagnetodynamics of fluids ,(1966)
R. A. Nicolaides, Existence, Uniqueness and Approximation for Generalized Saddle Point Problems SIAM Journal on Numerical Analysis. ,vol. 19, pp. 349- 357 ,(1982) , 10.1137/0719021
George J. Fix, Max D. Gunzburger, Janet S. Peterson, On finite element approximations of problems having inhomogeneous essential boundary conditions Computers & Mathematics with Applications. ,vol. 9, pp. 687- 700 ,(1983) , 10.1016/0898-1221(83)90126-8
Rolf Stenberg, On some three-dimensional finite elements for incompressible media Applied Mechanics and Engineering. ,vol. 63, pp. 261- 269 ,(1987) , 10.1016/0045-7825(87)90072-7
Ohannes A. Karakashian, On a Galerkin--Lagrange Multiplier Method for the Stationary Navier--Stokes Equations SIAM Journal on Numerical Analysis. ,vol. 19, pp. 909- 923 ,(1982) , 10.1137/0719066
Philippe G. Ciarlet, J. T. Oden, The Finite Element Method for Elliptic Problems ,(1978)
G. Duvaut, J. L. Lions, S. C. Cowin, C. W. John, Inequalities in mechanics and physics ,(1976)