On finite element approximations of problems having inhomogeneous essential boundary conditions

作者: George J. Fix , Max D. Gunzburger , Janet S. Peterson

DOI: 10.1016/0898-1221(83)90126-8

关键词: MathematicsBoundary value problemFinite element methodPoincaré–Steklov operatorMixed boundary conditionBoundary knot methodMixed finite element methodFree boundary problemMethod of fundamental solutionsMathematical analysis

摘要: Abstract The analysis and implementation of finite element methods for problems with inhomogeneous essential boundary conditions are considered. results given linear second order elliptic partial differential equations the nonlinear stationary Navier-Stokes equations. For certain easily implemented treatments, optimal error estimates numerical examples provided posed on polyhedral domains.

参考文章(8)
P.G. Ciarlet, P.-A. Raviart, THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. pp. 409- 474 ,(1972) , 10.1016/B978-0-12-068650-6.50020-4
P. Jamet, P. A. Raviart, Numerical solution of the stationary Navier-Stokes equations by finite element methods Proceedings of the International Symposium on Computing Methods in Applied Sciences and Engineering, Part 1. pp. 193- 223 ,(1973) , 10.1007/BFB0015177
Ohannes A. Karakashian, On a Galerkin--Lagrange Multiplier Method for the Stationary Navier--Stokes Equations SIAM Journal on Numerical Analysis. ,vol. 19, pp. 909- 923 ,(1982) , 10.1137/0719066
Miloš Zlámal, Curved Elements in the Finite Element Method. I SIAM Journal on Numerical Analysis. ,vol. 10, pp. 229- 240 ,(1973) , 10.1137/0710022
P.G. Ciarlet, P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods Computer Methods in Applied Mechanics and Engineering. ,vol. 1, pp. 217- 249 ,(1972) , 10.1016/0045-7825(72)90006-0
Ridgway Scott, Interpolated Boundary Conditions in the Finite Element Method SIAM Journal on Numerical Analysis. ,vol. 12, pp. 404- 427 ,(1975) , 10.1137/0712032
Max D. Gunzburger, Janet S. Peterson, On conforming finite element methods for the inhomogeneous stationary Navier-Stokes equations Numerische Mathematik. ,vol. 42, pp. 173- 194 ,(1983) , 10.1007/BF01395310