Statistique de comptage avec distribution uniforme de temps mort

作者: Jacques Libert

DOI: 10.1016/0029-554X(78)90169-6

关键词: Interval (mathematics)Dead timeConstant (mathematics)Event (probability theory)MathematicsCounting processDistribution (number theory)Mathematical analysis

摘要: Abstract Counting statistics with a rectangular dead time distribution are derived from general formulae given previously. For all the usual cases (extended or non-extended time, ordinary, stationary free counting process), expressions for interval density of event number k and events counted in measuring time. They consistent constant

参考文章(6)
J. Libert, Statistique de comptage: À propos d'une expérience récente Nuclear Instruments and Methods. ,vol. 126, pp. 589- 590 ,(1975) , 10.1016/0029-554X(75)90814-9
Jacques Libert, Statistique de comptage a temps mort variable: Expressions generales des distributions Nuclear Instruments and Methods. ,vol. 146, pp. 431- 434 ,(1977) , 10.1016/0029-554X(77)90729-7
Jörg W. Müller, Dead-time problems Nuclear Instruments and Methods. ,vol. 112, pp. 47- 57 ,(1973) , 10.1016/0029-554X(73)90773-8
J. Libert, Statistique de comptage du compteur libre Nuclear Instruments and Methods. ,vol. 130, pp. 615- 616 ,(1975) , 10.1016/0029-554X(75)90068-3
Donald A. McQuarrie, Handbook of Mathematical Functions American Journal of Physics. ,vol. 34, pp. 177- 177 ,(1966) , 10.1119/1.1972842
Jörg W. Müller, Some formulae for a dead-time-distorted poisson process Nuclear Instruments and Methods. ,vol. 117, pp. 401- 404 ,(1974) , 10.1016/0029-554X(74)90283-3