On the Completeness of Trajectories for Some Mechanical Systems

作者: Miguel Sánchez

DOI: 10.1007/978-1-4939-2441-7_15

关键词: Second order differential equationsVector fieldStatement (computer science)Finsler manifoldBanach manifoldAlgebraMathematicsCompleteness (order theory)Mathematical analysisMechanical system

摘要: The classical tools which ensure the completeness of both, vector fields and second order differential equations for mechanical systems, are revisited. Possible extensions in three directions discussed: infinite dimensional Banach (and Hilbert) manifolds, Finsler metrics pseudo-Riemannian spaces, latter including links with some relativistic spacetimes. Special emphasis is taken cleaning up known techniques, statement open questions exploration prospective frameworks.

参考文章(67)
R. Abraham, J. E. Marsden, R. Ratiu, Manifolds, tensor analysis, and applications: 2nd edition Manifolds, tensor analysis, and applications: 2nd edition. pp. 654- 654 ,(1988)
Juan Margalef Roig, Enrique Outerelo Domínguez, Una variedad diferenciable de dimensión infinita, separada y no regular. Revista matemática hispanoamericana. ,vol. 42, pp. 51- 55 ,(1982)
Miguel Sánchez, On the Geometry of Generalized Robertson± Walker Spacetimes: Geodesics General Relativity and Gravitation. ,vol. 30, pp. 915- 932 ,(1998) , 10.1023/A:1026664209847
J. Lafuente López, A geodesic completeness theorem for locally symmetric Lorentz manifolds Revista Matemática de la Universidad Complutense de Madrid. ,vol. 1, pp. 101- 110 ,(1988)
Yves Carri�re, Autour de la conjecture de L. Markus sur les variétés affines Inventiones Mathematicae. ,vol. 95, pp. 615- 628 ,(1989) , 10.1007/BF01393894
Wolfgang Kundt, Jürgen Ehlers, Exact solutions of the Gravitational Field Equations John Wiley & Sons, Inc.. pp. 49- 101 ,(1962)
Donald W. Kahn, Introduction to Global Analysis ,(2007)
Ivar Ekeland, The Hopf-Rinow theorem in infinite dimension Journal of Differential Geometry. ,vol. 13, pp. 287- 301 ,(1978) , 10.4310/JDG/1214434494
Daniel Schliebner, Thomas Leistner, Completeness of compact Lorentzian manifolds with Abelian holonomy arXiv: Differential Geometry. ,(2013) , 10.1007/S00208-015-1270-4