Cauchy Hypersurfaces and Global Lorentzian Geometry

作者: Miguel Sánchez

DOI:

关键词:

摘要: Our purpose is to give a taste on some global problems in General Relativity, an audience with basic knowledge intrinsic Differential Geometry. We focus the following related fundamental concept of Cauchy hypersurface: (1) smoothability and structure globally hyperbolic spacetimes, (2) initial value problem, (3) singularity theorems, (4) cosmic censorship Penrose inequality. Finally, open questions are commented.

参考文章(44)
Yves Carri�re, Autour de la conjecture de L. Markus sur les variétés affines Inventiones Mathematicae. ,vol. 95, pp. 615- 628 ,(1989) , 10.1007/BF01393894
Masiello Antonio, Variational methods in Lorentzian geometry Chapman and Hall/CRC. ,(2017) , 10.1201/9780203734445
Michel Lapidus, Domain of Dependence Journal of Mathematical Physics. ,vol. 11, pp. 437- 449 ,(1970) , 10.1063/1.1665157
Hubert L. Bray, PROOF OF THE RIEMANNIAN PENROSE INEQUALITY USING THE POSITIVE MASS THEOREM Journal of Differential Geometry. ,vol. 59, pp. 177- 267 ,(2001) , 10.4310/JDG/1090349428
Virginie Charette, Complete Flat Affine and Lorentzian Manifolds Geometriae Dedicata. ,vol. 97, pp. 187- 198 ,(2003) , 10.1023/A:1023680928912
Bruno Klingler, Complétude des variétés Lorentziennes à courbure constante. Mathematische Annalen. ,vol. 306, pp. 353- 370 ,(1996) , 10.1007/BF01445255
Justin Corvino, Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations Communications in Mathematical Physics. ,vol. 214, pp. 137- 189 ,(2000) , 10.1007/PL00005533
Alfonso Garc a-Parrado, Jos  M M Senovilla, Causal relationship: a new tool for the causal characterization of Lorentzian manifolds Classical and Quantum Gravity. ,vol. 20, pp. 625- 664 ,(2003) , 10.1088/0264-9381/20/4/305
José M M Senovilla, Trapped surfaces, horizons and exact solutions in higher dimensions Classical and Quantum Gravity. ,vol. 19, ,(2002) , 10.1088/0264-9381/19/12/101