Bayesian Inductive Inference and Maximum Entropy

作者: Stephen F. Gull

DOI: 10.1007/978-94-009-3049-0_4

关键词: InferenceBayes' theoremPrior probabilityBayesian probabilityArtificial intelligenceInductive probabilityPattern recognitionMathematicsApplied mathematicsBayesian inferenceStatistical inferencePrinciple of maximum entropy

摘要: The principles of Bayesian reasoning are reviewed and applied to problems inference from data sampled Poisson, Gaussian Cauchy distributions. Probability distributions (priors likelihoods) assigned in appropriate hypothesis spaces using the Maximum Entropy Principle, then manipulated via Bayes’ Theorem. testing requires careful consideration prior ranges any parameters involved, this leads a quantitive statement Occam’s Razor. As an example general principle we offer solution important problem regression analysis; determining optimal number use when fitting graphical with set basis functions.

参考文章(10)
S. F. Gull, J. Skilling, The Entropy of an Image Springer Netherlands. pp. 287- 301 ,(1985) , 10.1007/978-94-017-2221-6_11
J. Skilling, S.F. Gull, Maximum entropy method in image processing IEE Proceedings F Communications, Radar and Signal Processing. ,vol. 131, pp. 646- 659 ,(1984) , 10.1049/IP-F-1:19840099
C. Brans, R. H. Dicke, Mach's principle and a relativistic theory of gravitation Physical Review. ,vol. 124, pp. 925- 935 ,(1961) , 10.1103/PHYSREV.124.925
R. T. Cox, Probability, Frequency and Reasonable Expectation American Journal of Physics. ,vol. 14, pp. 1- 13 ,(1946) , 10.1119/1.1990764
M. Birkinshaw, S. F. Gull, H. Hardebeck, The Sunyaev–Zeldovich effect towards three clusters of galaxies Nature. ,vol. 309, pp. 34- 35 ,(1984) , 10.1038/309034A0
J. Shore, R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy IEEE Transactions on Information Theory. ,vol. 26, pp. 26- 37 ,(1980) , 10.1109/TIT.1980.1056144
John Skilling, The Axioms of Maximum Entropy Maximum-Entropy and Bayesian Methods in Science and Engineering. pp. 173- 187 ,(1988) , 10.1007/978-94-009-3049-0_8
Harold Jeffreys, R. Bruce Lindsay, Theory of probability ,(1939)
Edwin T. Jaynes, Prior Probabilities IEEE Transactions on Systems Science and Cybernetics. ,(1968)