Hyperparameters: Optimize, or Integrate Out?

作者: David J. C. MacKay

DOI: 10.1007/978-94-015-8729-7_2

关键词:

摘要: I examine two approximate methods for computational implementation of Bayesian hierarchical models, that is, models which include unknown hyperparameters such as regularization constants. In the ‘evidence framework’ model parameters are integrated over, and resulting evidence is maximized over hyperparameters. The optimized used to define a Gaussian approximation posterior distribution. alternative ‘MAP’ method, true probability found by integrating then parameters, made. similarities approaches, their relative merits, discussed, comparisons made with ideal solution.

参考文章(16)
Stephen F. Gull, Developments in Maximum Entropy Data Analysis Springer, Dordrecht. pp. 53- 71 ,(1989) , 10.1007/978-94-015-7860-8_4
R. K. Bryan, SOLVING OVERSAMPLED DATA PROBLEMS BY MAXIMUM ENTROPY. Springer Netherlands. pp. 221- 232 ,(1990) , 10.1007/978-94-009-0683-9_12
Stephen F. Gull, Bayesian Inductive Inference and Maximum Entropy Maximum-Entropy and Bayesian Methods in Science and Engineering. pp. 53- 74 ,(1988) , 10.1007/978-94-009-3049-0_4
C. E. M. Strauss, D. H. Wolpert, D. R. Wolf, Alpha, Evidence, and the Entropic Prior Springer, Dordrecht. pp. 113- 120 ,(1993) , 10.1007/978-94-017-2217-9_15
David J. C. MacKay, The evidence framework applied to classification networks Neural Computation. ,vol. 4, pp. 720- 736 ,(1992) , 10.1162/NECO.1992.4.5.720
David Wolpert, On the Use of Evidence in Neural Networks neural information processing systems. pp. 539- 546 ,(1992)
David J. C. MacKay, A practical Bayesian framework for backpropagation networks Neural Computation. ,vol. 4, pp. 448- 472 ,(1992) , 10.1162/NECO.1992.4.3.448
Grace Wahba, Smoothing noisy data with spline functions Numerische Mathematik. ,vol. 24, pp. 383- 393 ,(1975) , 10.1007/BF01437407