PARTIAL COVERING OF A CIRCLE BY EQUAL CIRCLES. PART I: THE MECHANICAL MODELS

作者: Tibor Tarnai , Zsolt Gáspár , Krisztián Hincz

DOI: 10.20382/JOCG.V5I1A6

关键词: Unit circleMathematicsStiffness matrixTensegrityRadiusMathematical problemGeometryStructure (category theory)Cover (topology)Dynamic relaxation

摘要: How must n equal circles of given radius be placed so that they cover as great a part the area unit circle possible? To analyse this mathematical problem, mechanical models are introduced. A generalized tensegrity structure is associated with maximum configuration circles, whose equilibrium determined numerically method dynamic relaxation, and stability investigated by means stiffness matrix structure. In Part I, principles presented, while an application will shown in forthcoming II.

参考文章(26)
Zsolt Gaspar, Mechanical Models for the Subclasses of Catastrophes Phenomenological and Mathematical Modelling of Structural Instabilities. pp. 277- 336 ,(2005) , 10.1007/3-211-38028-0_5
J. S Przemieniecki, Theory of matrix structural analysis ,(1985)
Kenneth H. Huebner, Donald L. Dewhirst, Douglas E. Smith, Ted G. Byrom, The finite element method for engineers ,(1975)
János Pach, Peter Brass, William Moser, Research Problems in Discrete Geometry ,(2005)
Ferenc Fodor, The Densest Packing of 19 Congruent Circles in a Circle Geometriae Dedicata. ,vol. 74, pp. 139- 145 ,(1999) , 10.1023/A:1005091317243
Kenneth J. Falconer, Richard K. Guy, Hallard T. Croft, Unsolved problems in geometry ,(1991)
Zsolt Gáspár, Tibor Tarnai, Krisztián Hincz, PARTIAL COVERING OF A CIRCLE BY EQUAL CIRCLES. PART II: THE CASE OF 5 CIRCLES Journal of Computational Geometry. ,vol. 5, pp. 126- 149 ,(2014) , 10.20382/JOCG.V5I1A7
Robert Connelly, Walter Whiteley, None, Second-Order Rigidity and Prestress Stability for TensegrityFrameworks SIAM Journal on Discrete Mathematics. ,vol. 9, pp. 453- 491 ,(1996) , 10.1137/S0895480192229236
Robert Connelly, None, Rigidity and Energy Inventiones Mathematicae. ,vol. 66, pp. 11- 33 ,(1982) , 10.1007/BF01404753
L. Fejes Tóth, Perfect distribution of points on a sphere Periodica Mathematica Hungarica. ,vol. 1, pp. 25- 33 ,(1971) , 10.1007/BF02095633