PARTIAL COVERING OF A CIRCLE BY EQUAL CIRCLES. PART II: THE CASE OF 5 CIRCLES

作者: Zsolt Gáspár , Tibor Tarnai , Krisztián Hincz

DOI: 10.20382/JOCG.V5I1A7

关键词:

摘要: How must n equal circles of given radius r be placed so that they cover as great a part the area unit circle possible? In this Part II two-part paper, conjectured solution problem for = 5 is varying from maximum packing to minimum covering radius. Results are obtained by applying mechanical model described in I. A generalized tensegrity structure associated with configuration circles, and using catastrophe theory, it pointed out ''equilibrium paths'' have bifurcations, is, at certain values r, type changes.

参考文章(10)
Zsolt Gaspar, Mechanical Models for the Subclasses of Catastrophes Phenomenological and Mathematical Modelling of Structural Instabilities. pp. 277- 336 ,(2005) , 10.1007/3-211-38028-0_5
Tibor Tarnai, Zsolt Gáspár, Krisztián Hincz, PARTIAL COVERING OF A CIRCLE BY EQUAL CIRCLES. PART I: THE MECHANICAL MODELS Journal of Computational Geometry. ,vol. 5, pp. 104- 125 ,(2014) , 10.20382/JOCG.V5I1A6
I. Stewart, T. Poston, R. H. Plaut, Catastrophe theory and its applications ,(1978)
H. S. M. Coxeter, Introduction to Geometry ,(1969)
Udo Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten Mathematische Nachrichten. ,vol. 40, pp. 111- 124 ,(1969) , 10.1002/MANA.19690400110
Viggo Tvergaard, G. W. Hunt, J. M. T. Thompson, Elastic instability phenomena ,(1984)
Sidney Kravitz, Packing Cylinders into Cylindrical Containers Mathematics Magazine. ,vol. 40, pp. 65- 71 ,(1967) , 10.1080/0025570X.1967.11975768
C.T. Zahn, Black box maximization of circular coverage Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics. ,vol. 66B, pp. 181- ,(1962) , 10.6028/JRES.066B.020
G. M. Petersen, H. S. M. Coxeter, Introduction to Geometry. The American Mathematical Monthly. ,vol. 68, pp. 1016- ,(1961) , 10.2307/2311833