Random Walks Versus Fractional Integration: Power Comparisons of Scalar and Joint Tests of the Variance-Time Function

作者: Francis X. Diebold

DOI: 10.1007/978-94-015-7819-6_3

关键词: Multivariate random variableRandom elementRandom compact setApplied mathematicsUnit rootRandom walkQuantum walkHeterogeneous random walk in one dimensionTime seriesMathematics

摘要: A class of tests for the detection deviations from random-walk behavior in observed time series is examined. The are based on variance-time function, which maps integers k into variance k-th differences a series. Both simple and joint null hypotheses considered, exact finite-sample critical values tabulated. power against fractionally-integrated alternatives, argued to have interesting function interpretations potential importance economics, evaluated.

参考文章(18)
B. Mandelbrot, Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis Research Papers in Economics. pp. 259- 290 ,(1972)
John H. Cochrane, How Big Is the Random Walk in GNP? Journal of Political Economy. ,vol. 96, pp. 893- 920 ,(1988) , 10.1086/261569
W. K. LI, A. I. MCLEOD, Fractional time series modelling Biometrika. ,vol. 73, pp. 217- 221 ,(1986) , 10.1093/BIOMET/73.1.217
John Geweke, Susan Porter-Hudak, THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS Journal of Time Series Analysis. ,vol. 4, pp. 221- 238 ,(1983) , 10.1111/J.1467-9892.1983.TB00371.X
Francis X. Diebold, Testing for bubbles, reflecting barriers and other anomalies Journal of Economic Dynamics and Control. ,vol. 12, pp. 63- 70 ,(1988) , 10.1016/0165-1889(88)90016-4
Alexander Samarov, Murad S. Taqqu, ON THE EFFICIENCY OF THE SAMPLE MEAN IN LONG‐MEMORY NOISE Journal of Time Series Analysis. ,vol. 9, pp. 191- 200 ,(1988) , 10.1111/J.1467-9892.1988.TB00463.X
Eugene F. Fama, Kenneth R. French, Permanent and Temporary Components of Stock Prices Journal of Political Economy. ,vol. 96, pp. 246- 273 ,(1988) , 10.1086/261535
C. W. J. Granger, Roselyne Joyeux, AN INTRODUCTION TO LONG-MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING Journal of Time Series Analysis. ,vol. 1, pp. 15- 29 ,(1980) , 10.1111/J.1467-9892.1980.TB00297.X
David A. Dickey, William R. Bell, Robert B. Miller, Unit Roots in Time Series Models: Tests and Implications The American Statistician. ,vol. 40, pp. 12- 26 ,(1986) , 10.1080/00031305.1986.10475349