Evaluation of a high-resolution wave hindcast model SWAN for the West Mediterranean basin

作者: Khalid Amarouche , Adem Akpınar , Nour El Islam Bachari , Recep Emre Çakmak , Fouzia Houma

DOI: 10.1016/J.APOR.2019.01.014

关键词: DissipationHindcastCalibrationBuoyMediterranean BasinSignificant wave heightClimatologyGeologyWind waveStructural basin

摘要: Abstract This study aims to present an evaluation and implementation of a high-resolution SWAN wind wave hindcast model forced by the CFSR fields in west Mediterranean basin, taking into account recent developments modelling as new source terms package ST6. For this purpose, was calibrated based on one-year observations Azeffoune buoy (Algerian coast) validated against eleven buoys measurements through West basin. calibration process, we focused whitecapping dissipation coefficient Cds exponential growth terms. The statistical error analysis results led conclude that corrected underestimation significant height hindcasts default mode improved its accuracy Komen et al (1984) Janssen (1991) with Cds = 1.0 have been thus recommended for western comparison simulation obtained using parameters measurement showed high performance average scatter index 30% heights 19% mean period. will constitute practical spatial resolution (˜3 km) Algerian which allow us proceed finer mesh size nested grid system area.

参考文章(67)
Frederic Marcos, Francoise Becq, Michel Benoit, Development of a Third Generation Shallow-Water Wave Model with Unstructured Spatial Meshing 25th International Conference on Coastal Engineering. ,vol. 1, pp. 465- 478 ,(1997) , 10.9753/ICCE.V25.%P
P.A.E.M. Janssen, Heinz Günther, Susanne Hasselmann, The WAM Model cycle 4 World Data Center for Climate (WDCC) at DKRZ. ,(2015) , 10.2312/WDCC/DKRZ_REPORT_NO04
Stefan Zieger, Alexander V. Babanin, W. Erick Rogers, Ian R. Young, Observation-based source terms in the third-generation wave model WAVEWATCH Ocean Modelling. ,vol. 96, pp. 2- 25 ,(2015) , 10.1016/J.OCEMOD.2015.07.014
Peter A. E. M. Janssen, Consequences of the Effect of Surface Gravity Waves on the Mean Air Flow Springer, Berlin, Heidelberg. pp. 193- 198 ,(1992) , 10.1007/978-3-642-84847-6_19
P. A. E. M. Janssen, K. Hasselmann, M. Donelan, G. J. Komen, L. Cavaleri, S. Hasselmann, Dynamics and Modelling of Ocean Waves ,(1994)
J. A. Battjes, J. P. F. M. Janssen, Energy loss and set-up due to breaking random waves Proceedings of 16th Conference on Coastal Engineering, Hamburg, Germany, 1978. pp. 569- 587 ,(1978) , 10.1061/9780872621909.034
Gerbrant Ph. Van Vledder, Adem Akpınar, Wave model predictions in the Black Sea: Sensitivity to wind fields Applied Ocean Research. ,vol. 53, pp. 161- 178 ,(2015) , 10.1016/J.APOR.2015.08.006
Ian R. Young, Alexander V. Babanin, Spectral Distribution of Energy Dissipation of Wind-Generated Waves due to Dominant Wave Breaking Journal of Physical Oceanography. ,vol. 36, pp. 376- 394 ,(2006) , 10.1175/JPO2859.1
Suranjana Saha, Shrinivas Moorthi, Hua-Lu Pan, Xingren Wu, Jiande Wang, Sudhir Nadiga, Patrick Tripp, Robert Kistler, John Woollen, David Behringer, Haixia Liu, Diane Stokes, Robert Grumbine, George Gayno, Jun Wang, Yu-Tai Hou, Hui-ya Chuang, Hann-Ming H. Juang, Joe Sela, Mark Iredell, Russ Treadon, Daryl Kleist, Paul Van Delst, Dennis Keyser, John Derber, Michael Ek, Jesse Meng, Helin Wei, Rongqian Yang, Stephen Lord, Huug van den Dool, Arun Kumar, Wanqiu Wang, Craig Long, Muthuvel Chelliah, Yan Xue, Boyin Huang, Jae-Kyung Schemm, Wesley Ebisuzaki, Roger Lin, Pingping Xie, Mingyue Chen, Shuntai Zhou, Wayne Higgins, Cheng-Zhi Zou, Quanhua Liu, Yong Chen, Yong Han, Lidia Cucurull, Richard W. Reynolds, Glenn Rutledge, Mitch Goldberg, The NCEP Climate Forecast System Reanalysis Bulletin of the American Meteorological Society. ,vol. 91, pp. 1015- 1057 ,(2010) , 10.1175/2010BAMS3001.1