作者: Karoline Disser , Hans-Christoph Kaiser , Joachim Rehberg
DOI: 10.1137/140982969
关键词: Elliptic operator 、 Bounded function 、 Mathematical analysis 、 Order (ring theory) 、 Dirichlet distribution 、 Sobolev space 、 Nabla symbol 、 Neumann boundary condition 、 Mathematics 、 Isomorphism
摘要: On bounded domains $\Omega\subset \mathbb{R}^3$, we consider divergence-type operators $-\nabla \cdot \mu \nabla$, including mixed homogeneous Dirichlet and Neumann boundary conditions on $\partial \Omega \setminus \Gamma$ $\Gamma \subset \partial \Omega$, respectively, discontinuous coefficient functions $\mu$. We develop a general geometric framework for $\Omega$, $\Gamma$, $\mu$ in which it is possible to prove that \nabla +1$ provides an isomorphism from $W^{1,q}_\Gamma(\Omega)$ $W^{-1,q}_\Gamma(\Omega)$ some $q>3$. indicate relevant examples real-world applications.