Optimal Sobolev Regularity for Linear Second-Order Divergence Elliptic Operators Occurring in Real-World Problems

作者: Karoline Disser , Hans-Christoph Kaiser , Joachim Rehberg

DOI: 10.1137/140982969

关键词: Elliptic operatorBounded functionMathematical analysisOrder (ring theory)Dirichlet distributionSobolev spaceNabla symbolNeumann boundary conditionMathematicsIsomorphism

摘要: On bounded domains $\Omega\subset \mathbb{R}^3$, we consider divergence-type operators $-\nabla \cdot \mu \nabla$, including mixed homogeneous Dirichlet and Neumann boundary conditions on $\partial \Omega \setminus \Gamma$ $\Gamma \subset \partial \Omega$, respectively, discontinuous coefficient functions $\mu$. We develop a general geometric framework for $\Omega$, $\Gamma$, $\mu$ in which it is possible to prove that \nabla +1$ provides an isomorphism from $W^{1,q}_\Gamma(\Omega)$ $W^{-1,q}_\Gamma(\Omega)$ some $q>3$. indicate relevant examples real-world applications.

参考文章(59)
P. Lelong, Jacques Louis Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles Gauthier-Villars : Dunod. ,(1968)
Gero von Plessen, Ulrich Wilhelm Paetzold, Light trapping with plasmonic back contacts in thin-film silicon solar cells Publikationsserver der RWTH Aachen University. ,(2013)
V. G. Mazʹi︠a︡, J. Rossmann, Elliptic Equations in Polyhedral Domains ,(2010)
Joshua N. Winn, Robert D. Meade, Steven G. Johnson, John D. Joannopoulos, Photonic Crystals: Molding the Flow of Light ,(1995)