Numerical Quadrature for Bessel Transformations with High Oscillations

作者: Shuhuang Xiang

DOI: 10.1007/978-3-642-00464-3_69

关键词: Bessel functionNumerical integrationOrder (ring theory)Mathematical analysisMathematics

摘要: We explore higher order numerical quadrature for the integration of systems containing Bessel functions such as $\int_a^b f(x)J_{\nu}(rx)dx$ and f(x)\cos(r_1x)J_{\nu}(rx)dx$. The decay error these methods drastically improves frequency grows.

参考文章(22)
David Levin, Fast integration of rapidly oscillatory functions Journal of Computational and Applied Mathematics. ,vol. 67, pp. 95- 101 ,(1996) , 10.1016/0377-0427(94)00118-9
C. W. Clenshaw, A. R. Curtis, A method for numerical integration on an automatic computer Numerische Mathematik. ,vol. 2, pp. 197- 205 ,(1960) , 10.1007/BF01386223
K.C. Chung, G.A. Evans, J.R. Webster, A method to generate generalized quadrature rule for oscillatory integrals Applied Numerical Mathematics. ,vol. 34, pp. 85- 93 ,(2000) , 10.1016/S0168-9274(99)00033-1
Shuhuang Xiang, NUMERICAL ANALYSIS OF A FAST INTEGRATION METHOD FOR HIGHLY OSCILLATORY FUNCTIONS Bit Numerical Mathematics. ,vol. 47, pp. 469- 482 ,(2007) , 10.1007/S10543-007-0127-Y
A. Iserles, S. P. N�rsett, On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation Bit Numerical Mathematics. ,vol. 44, pp. 755- 772 ,(2004) , 10.1007/S10543-004-5243-3
David Levin, Analysis of a collocation method for integrating rapidly oscillatory functions Journal of Computational and Applied Mathematics. ,vol. 78, pp. 131- 138 ,(1997) , 10.1016/S0377-0427(96)00137-9
G.A. Evans, J.R. Webster, A high order, progressive method for the evaluation of irregular oscillatory integrals Applied Numerical Mathematics. ,vol. 23, pp. 205- 218 ,(1997) , 10.1016/S0168-9274(96)00058-X
Yudell L. Luke, On the computation of oscillatory integrals Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 50, pp. 269- 277 ,(1954) , 10.1017/S0305004100029327