Fast integration of rapidly oscillatory functions

作者: David Levin

DOI: 10.1016/0377-0427(94)00118-9

关键词:

摘要: … We remark that for r = 1 similar accuracy can be obtained by using n-point Gauss-quadrature … accuracy obtained here with only 9 points, classical quadrature rules require ~ 10 6 points. …

参考文章(7)
Robert Piessens, Maria Branders, Algorithm for the computation of Bessel function integrals Journal of Computational and Applied Mathematics. ,vol. 11, pp. 119- 137 ,(1984) , 10.1016/0377-0427(84)90037-2
M Puoskari, A method for computing Bessel function integrals Journal of Computational Physics. ,vol. 75, pp. 334- 344 ,(1988) , 10.1016/0021-9991(88)90116-7
Robert Piessens, Maria Branders, Modified clenshaw-curtis method for the computation of Bessel function integrals Bit Numerical Mathematics. ,vol. 23, pp. 370- 381 ,(1983) , 10.1007/BF01934465
E. A. Flinn, A Modification of Filon's Method of Numerical Integration Journal of the ACM. ,vol. 7, pp. 181- 184 ,(1960) , 10.1145/321021.321029
L. N. G. Filon, III.—On a Quadrature Formula for Trigonometric Integrals. Proceedings of the Royal Society of Edinburgh. ,vol. 49, pp. 38- 47 ,(1930) , 10.1017/S0370164600026262