Peptide-to-Protein Summarization: An Important Step for Accurate Quantification in Label-Based Proteomics

作者: Martina Fischer , Thilo Muth , Bernhard Y. Renard

DOI: 10.1007/978-1-4939-9232-4_11

关键词: Variance (accounting)Reliability (statistics)PeptideAutomatic summarizationFeature (machine learning)Quantitative proteomicsProteomicsComputational biologyComputer science

摘要: Quantitative MS/MS-based measurements are assessed at the peptide spectrum level and substantial variance is frequently observed for any given protein. Protein quantification requires a peptide-to-protein summarization step. This important step has been little investigated most strategies only rely on quantitative values, ignoring wealth of additional feature information available spectra.In this chapter, we discuss methods that can be applied label-based protein quantification. In particular, focus using peptide characteristics in addition to values abundance inference. We highlight significant relations features accuracy assess the reliability spectra development correction. As result, lower quality identified, their impact minimized overall improved. Here, investigate different detail, emphasize benefits integrating spectrum feature information, provide recommendations usage methods.

参考文章(44)
Ian P Shadforth, Tom PJ Dunkley, Kathryn S Lilley, Conrad Bessant, i-Tracker: For quantitative proteomics using iTRAQ™ BMC Genomics. ,vol. 6, pp. 145- 145 ,(2005) , 10.1186/1471-2164-6-145
Florian P. Breitwieser, André Müller, Loïc Dayon, Thomas Köcher, Alexandre Hainard, Peter Pichler, Ursula Schmidt-Erfurth, Giulio Superti-Furga, Jean-Charles Sanchez, Karl Mechtler, Keiryn L. Bennett, Jacques Colinge, General Statistical Modeling of Data from Protein Relative Expression Isobaric Tags Journal of Proteome Research. ,vol. 10, pp. 2758- 2766 ,(2011) , 10.1021/PR1012784
Vincent A Fusaro, D R Mani, Jill P Mesirov, Steven A Carr, Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nature Biotechnology. ,vol. 27, pp. 190- 198 ,(2009) , 10.1038/NBT.1524
Wen-Ting Lin, Wei-Neng Hung, Yi-Hwa Yian, Kun-Pin Wu, Chia-Li Han, Yet-Ran Chen, Yu-Ju Chen, Ting-Yi Sung, Wen-Lian Hsu, Multi-Q: a fully automated tool for multiplexed protein quantitation. Journal of Proteome Research. ,vol. 5, pp. 2328- 2338 ,(2006) , 10.1021/PR060132C
Jeanette E. Eckel-Passow, Terry M. Therneau, Kevin L. Schey, Elizabeth G. Hill, John H. Schwacke, Susana Comte-Walters, Elizabeth H. Slate, Ann L. Oberg, A statistical model for iTRAQ data analysis. Journal of Proteome Research. ,vol. 7, pp. 3091- 3101 ,(2008) , 10.1021/PR070520U
Douglas W. Mahoney, Terry M. Therneau, Carrie J. Heppelmann, LeeAnn Higgins, Linda M. Benson, Roman M. Zenka, Pratik Jagtap, Gary L. Nelsestuen, H. Robert Bergen, Ann L. Oberg, Relative quantification: characterization of bias, variability and fold changes in mass spectrometry data from iTRAQ-labeled peptides. Journal of Proteome Research. ,vol. 10, pp. 4325- 4333 ,(2011) , 10.1021/PR2001308
Thilo Muth, Daniela Keller, Stephanie Michaela Puetz, Lennart Martens, Albert Sickmann, Andreas M. Boehm, jTraqX: a free, platform independent tool for isobaric tag quantitation at the protein level Proteomics. ,vol. 10, pp. 1223- 1225 ,(2010) , 10.1002/PMIC.200900374
Xianyin Lai, Lianshui Wang, Haixu Tang, Frank A. Witzmann, A novel alignment method and multiple filters for exclusion of unqualified peptides to enhance label-free quantification using peptide intensity in LC-MS/MS. Journal of Proteome Research. ,vol. 10, pp. 4799- 4812 ,(2011) , 10.1021/PR2005633
Christie G Enke, None, The science of chemical analysis and the technique of mass spectrometry International Journal of Mass Spectrometry. ,vol. 212, pp. 1- 11 ,(2001) , 10.1016/S1387-3806(01)00500-0
Josselin Noirel, Caroline Evans, Ishtiaq Rehman, Phillip C. Wright, Saw Yen Ow, Malinda Salim, iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly". Journal of Proteome Research. ,vol. 8, pp. 5347- 5355 ,(2009) , 10.1021/PR900634C