作者: F. D. Nobre , M. A. Rego-Monteiro , C. Tsallis
DOI: 10.1103/PHYSREVLETT.106.140601
关键词: Klein–Gordon equation 、 Dirac equation 、 Mathematical physics 、 Simultaneous equations 、 Relativistic wave equations 、 Dirac (software) 、 Partial differential equation 、 Nonlinear system 、 Independent equation 、 Physics
摘要: Generalizations of the three main equations quantum physics, namely, Schroedinger, Klein-Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an index q, considered in such a way that standard linear recovered limit q{yields}1. Interestingly, these present common, solitonlike, traveling solution, which is written terms q-exponential function naturally emerges within nonextensive statistical mechanics. In all cases, well-known Einstein energy-momentum relation preserved for arbitrary values q.