Nonlinear Relativistic and Quantum Equations with a Common Type of Solution

作者: F. D. Nobre , M. A. Rego-Monteiro , C. Tsallis

DOI: 10.1103/PHYSREVLETT.106.140601

关键词: Klein–Gordon equationDirac equationMathematical physicsSimultaneous equationsRelativistic wave equationsDirac (software)Partial differential equationNonlinear systemIndependent equationPhysics

摘要: Generalizations of the three main equations quantum physics, namely, Schroedinger, Klein-Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an index q, considered in such a way that standard linear recovered limit q{yields}1. Interestingly, these present common, solitonlike, traveling solution, which is written terms q-exponential function naturally emerges within nonextensive statistical mechanics. In all cases, well-known Einstein energy-momentum relation preserved for arbitrary values q.

参考文章(33)
Richard L. Liboff, Introductory quantum mechanics Addison-Wesley. ,(1980)
Daniel V. Schroeder, Michael Edward Peskin, An Introduction to Quantum Field Theory ,(2005)
Catherine Sulem, Pierre-Louis Sulem, Focusing nonlinear Schro¨dinger equation and wave-packet collapse Nonlinear Analysis-theory Methods & Applications. ,vol. 30, pp. 833- 844 ,(1997) , 10.1016/S0362-546X(96)00168-X
Juan Luis Vazquez, The Porous Medium Equation Oxford University Press. ,(2006) , 10.1093/ACPROF:OSO/9780198569039.001.0001
Jean-Philippe Bouchaud, Antoine Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications Physics Reports. ,vol. 195, pp. 127- 293 ,(1990) , 10.1016/0370-1573(90)90099-N
Veit Schwämmle, Fernando D. Nobre, Evaldo M. F. Curado, Consequences of the H theorem from nonlinear Fokker-Planck equations. Physical Review E. ,vol. 76, pp. 041123- ,(2007) , 10.1103/PHYSREVE.76.041123