作者: Miguel Angel Fuentes , Yuzuru Sato , Constantino Tsallis
DOI: 10.1016/J.PHYSLETA.2011.06.039
关键词: Standard molar entropy 、 Binary entropy function 、 Sensitivity (control systems) 、 Maximum entropy probability distribution 、 Lyapunov exponent 、 Entropy rate 、 Exponential function 、 Statistical physics 、 Physics 、 Entropy production 、 General Physics and Astronomy
摘要: Abstract We analytically link three properties of nonlinear dynamical systems, namely sensitivity to initial conditions, entropy production, and escape rate, in z -logistic maps for both positive zero Lyapunov exponents. unify these relations at chaos, where the exponent is positive, its onset, it vanishes. Our result unifies, particular, two already known cases, (i) standard rate presence escape, valid exponential functionality rates with strong (ii) Pesin-like identity no power-law behavior present points such as Feigenbaum one.